|
|
Application of integrated geophysical exploration technology in the geothermal exploration of northern Jinan |
ZHANG Yi1,2( ), LIU Peng-Lei3, WANG Yu-Min1,2, ZHANG Peng-Peng1,2( ), ZHANG Chao1,2, ZHANG Ning1,2 |
1. Shandong Institute of Geophysical & Geochemical Exploration, Jinan 250013, China 2. Shandong Geological Exploration Engineering Technology Research Center, Jinan 250013, China 3. Shandong Geology and Mineral Engineering Group Co., Ltd., Jinan 250299, China |
|
|
Abstract Ji'nan possesses highly abundant geothermal resources, which are hosted by Ordovician-Cambrian karst-fissured geothermal reservoirs and Neogene-Paleogene clastic pore-fissure geothermal reservoirs. The geothermal exploration in this study focuses on the Ordovician-Cambrian karst fissured geothermal reservoirs in Daqiao Town in northern Ji'nan. Through geophysical profile measurements, this study aims to identify the distributions of strata and fault structures and the burial depths of geothermal reservoirs, infer the attitudes and spatial morphologies of fault structures associated with heat control and conduction, delineate the target area for geothermal well construction, and conduct drilling verification in the favorable underground water-rich position. Building on the collected data, this study interpreted and inferred the fault structures in the study area and comparatively analyzed the water-bearing properties by employing direct-current sounding, controlled source audio magnetotellurics, and magnetotelluric survey. A geothermal exploration and production combined well was constructed in a favorable position of the geothermal target area, manifesting a completion depth of 1 532.06 m, a static-water burial depth of 13.03 m, a wellhead water temperature of 50.1 ℃, a water yield of 132.998 m3/h, and a dropdown depth of 18.27 m.
|
Received: 10 April 2023
Published: 26 February 2024
|
|
|
|
|
|
Geothermal geological map of karst heat storage in northern Jinan
|
|
Conceptual model of karst heat storage in northern Jinan
|
地质年代 | 岩性 | 电阻率/(Ω·m) | 新近纪 | 砂岩 | 几百 | 石炭纪、二叠纪 | 砂岩、泥岩、炭质页岩 | 2000左右 | 奥陶纪 | 灰岩、泥质灰岩 | 3000~4000 |
|
Statistical of formation resistivity in working area
|
|
Work layout plan
|
|
The original measurement curve of 300/P802 point
|
|
Apparent resistivity section (a) and geology section (b) of P798 MT measurement
|
|
P802 profile geophysical survey results
|
|
P812 profile geophysical survey results
|
|
P822 profile geophysical survey results
|
|
MT measurement overlay stereogram
|
[1] |
史忠民, 李传磊, 程秀明, 等. 济北地热田地质特征[J]. 山东国土资源, 2005, 21(11):39-42.
|
[1] |
Shi Z M, Li C L, Cheng X M, et al. Geological characteristics of geothermal field in north of Jinan city[J]. Land and Resources in Shandong Province, 2005, 21(11):39-42.
|
[2] |
曾昭发, 陈雄, 李静, 等. 地热地球物理勘探新进展[J]. 地球物理学进展, 2012, 27(1):168-178.
|
[2] |
Zeng Z F, Chen X, Li J, et al. Advancement of geothermal geophysics exploration[J]. Progress in Geophysics, 2012, 27(1):168-178.
|
[3] |
刘瑞德. 地热田电磁法勘查与应用技术研究[D]. 北京: 中国地质大学(北京), 2008.
|
[3] |
Liu R D. The study of electromagnetic prospecting and applied technology on geothermal field[D]. Beijing: China University of Geosciences(Beijing), 2008.
|
[4] |
李大心, 贾苓希. 应用物探方法研究地热区地温场分布[J]. 地质科技情报, 1989, 8(4):121-126.
|
[4] |
Li D X, Jia L X. Application of exploration geophysics for studying geothermal distribution in geo-thermal areas[J]. Geological Science and Technology Information, 1989, 8(4):121-126.
|
[5] |
杨锋杰, 韩震, 江涛, 等. 地热资源的热红外遥感[J]. 矿山测量, 1999(3):25-27,59.
|
[5] |
Yang F J, Han Z, Jiang T, et al. Thermal infrared remote sensing of geothermal resources[J]. Mine Surveying, 1999(3):25-27,59.
|
[6] |
金永念, 张登明, 刘志平. 综合地球物理勘查技术在地热勘查中的应用[J]. 水文地质工程地质, 2006, 33(1):92-94,106.
|
[6] |
Jin Y N, Zhang D M, Liu Z P. The application of integral geophysical survey technology in geothermal exploration[J]. Hydrogeology & Engineering Geology, 2006, 33(1):92-94,106.
|
[7] |
阴曼宁, 安存杰, 金玉洁. 综合物化探方法在内蒙古某地区地热勘探中的应用[J]. 物探与化探, 2007, 31(4):313-316.
|
[7] |
Yin M N, An C J, Jin Y J. The application of the integrated geophysical and geochemical methods to the geothermal exploration in a certain area of inner Mongolia[J]. Geophysical and Geochemical Exploration, 2007, 31(4):313-316.
|
[8] |
柳建新, 郭振威, 郭荣文, 等. CSAMT和重力方法在狮子湖温泉深部地球物理勘查中的应用[J]. 地球物理学进展, 2009, 24(5):1868-1873.
|
[8] |
Liu J X, Guo Z W, Guo R W, et al. Application of controlled source audiomagnetotelluric and gravity methods to survey the Lionlake hot spring geothermal area[J]. Progress in Geophysics, 2009, 24(5):1868-1873.
|
[9] |
李百寿, 秦其明, 侯贵廷, 等. 被动式超低频电磁法在深部地热资源勘察中的应用——以JR-119井及JR-168井为例[J]. 地球物理学进展, 2009, 24(2):699-706.
|
[9] |
Li B S, Qin Q M, Hou G T, et al. Applications of the passive Super Low Frequency (SLF) electromagnetic technique to exploration of geothermal energy sources[J]. Progress in Geophysics, 2009, 24(2):699-706.
|
[10] |
秦其明, 李百寿, 崔容菠, 等. 地热井的天然源超低频电磁探测影响因素分析[J]. 地球物理学报, 2010, 53(3):685-694.
|
[10] |
Qin Q M, Li B S, Cui R B, et al. Analysis of factors affecting natural source SLF electromagnetic exploration at geothermal wells[J]. Chinese Journal of Geophysics, 2010, 53(3):685-694.
|
[11] |
孙知新, 李百祥, 王志林. 青海共和盆地存在干热岩可能性探讨[J]. 水文地质工程地质, 2011, 38(2):119-124,129.
|
[11] |
Sun Z X, Li B X, Wang Z L. Exploration of the possibility of hot dry rock occurring in the Qinghai Gonghe Basin[J]. Hydrogeology & Engineering Geology, 2011, 38(2):119-124,129.
|
[12] |
薛建球, 甘斌, 李百祥, 等. 青海共和—贵德盆地增强型地热系统(干热岩)地质—地球物理特征[J]. 物探与化探, 2013, 37(1):35-41.
|
[12] |
Xue J Q, Gan B, Li B X, et al. Geological-geophysical characteristics of enhanced geothermal systems(hot dry rocks) in gonghe-guide basin[J]. Geophysical and Geochemical Exploration, 2013, 37(1):35-41.
|
[13] |
刘振华, 李世峰, 杨特波, 等. 综合物探技术在邯郸地热田勘查中的应用[J]. 工程地球物理学报, 2013, 10(1):111-116.
|
[13] |
Liu Z H, Li S F, Yang T B, et al. The application of integral geophysical survey technology in geothermal exploration of Handan area[J]. Chinese Journal of Engineering Geophysics, 2013, 10(1):111-116.
|
[14] |
马晓东, 刘洪波, 白锦林. 综合物探在莘县地区地热勘查中的应用[J]. 物探与化探, 2014, 38(3):461-464.
|
[14] |
Ma X D, Liu H B, Bai J L. The application of integrated geophysical methods to the geothermal exploration in Shenxian area[J]. Geophysical and Geochemical Exploration, 2014, 38(3):461-464.
|
[15] |
左丽琼, 王彩会, 荆慧, 等. 综合物探方法在南通小洋口地区地热勘查中的应用[J]. 工程地球物理学报, 2016, 13(1):122-129.
|
[15] |
Zuo L Q, Wang C H, Jing H, et al. The application of comprehensive geophysical prospecting method to geothermal prospecting in Xiaoyangkou of Nantong city in Jiangsu[J]. Chinese Journal of Engineering Geophysics, 2016, 13(1):122-129.
|
[16] |
刘会毅, 徐坤, 国吉安, 等. 综合物探方法在安徽沱湖地区地热勘查中的应用[J]. 工程地球物理学报, 2018, 15(5):648-654.
|
[16] |
Liu H Y, Xu K, Guo J A, et al. Application of integrated geophysical method to geothermal exploration in tuohu area of Anhui Province[J]. Chinese Journal of Engineering Geophysics, 2018, 15(5):648-654.
|
[17] |
陈昌昕, 严加永, 周文月, 等. 地热地球物理勘探现状与展望[J]. 地球物理学进展, 2020, 35(4):1223-1231.
|
[17] |
Chen C X, Yan J Y, Zhou W Y, et al. Status and prospects of geophysical method used in geothermal exploration[J]. Progress in Geophysics, 2020, 35(4):1223-1231.
|
[1] |
ZHENG Hao, CUI Yue, XU Lu, QI Peng. A key seismic processing technique for deep geothermal exploration in igneous province in southern China[J]. Geophysical and Geochemical Exploration, 2024, 48(1): 88-97. |
[2] |
Cheng Zheng-Pu, Lian Sheng, Wei Qiang, Hu Wen-Guang, Lei Ming, Li Shu. Research on time-frequency electromagnetic method detection of Wumishan Formation thermal reservoir in deep Xiong’an New Area[J]. Geophysical and Geochemical Exploration, 2023, 47(6): 1400-1409. |
|
|
|
|