|
|
Exploring geological conditions for tunnel construction in hydropower engineering using a 3D resistivity method |
HUANG Yao( ) |
Nanning College of Technology School of Civil Engineering, Guilin 541006, China |
|
|
Abstract To explore the geological conditions for the tunnel construction in hydropower engineering, this study built a calculation model for tunnel geological conditions using a 3D resistivity method. Through numerical simulations, this study determined the 3D resistivity distribution of the tunnel model. Then, the model was applied to the field exploration of a water resource allocation project in Yunnan, yielding satisfactory exploration results, as verified through drilling. The findings suggest that the 3D resistivity method can be effectively applied to the exploration of geological conditions for tunnel construction in hydropower engineering by accurately determining formation thicknesses, as well as the sizes, locations, and filling characteristics of karst cavities. The quantitative and qualitative data obtained from exploration in this study lay a reliable foundation for the management, informatization, and disaster prevention of tunnel construction.
|
Received: 09 December 2022
Published: 26 February 2024
|
|
|
|
|
|
Layout of model 1
|
|
Simulation results
|
|
Layout of survey line
|
|
Result of 3D resistivity inversion
|
|
3D diagram of high resistivity anomalous bodies
|
|
Inversion result and interpretation of survey line L4
|
|
Bar chart and typical digital core chart of borehole D1
|
[1] |
张勇, 张子新, 华安增. TSP超前地质预报在公路隧道中的应用[J]. 西部探矿工程, 2001, 13(5):71-72.
|
[1] |
Zhang Y, Zhang Z X, Hua A Z. Application of TSP advanced geological prediction in highway tunnel[J]. West-china Exploration Engineering, 2001, 13(5):71-72.
|
[2] |
蔡盛. 张吉怀铁路隧道超前预报技术应用研究[J]. 物探与化探, 2021, 45(5):1275-1280.
|
[2] |
Cai S. The research on the application of geological prediction technology to Zhangjihuai railway tunnel[J]. Geophysical and Geochemical Exploration, 2021, 45(5):1275-1280.
|
[3] |
钟世航, 王荣. 陆地声呐法探查中小溶洞、溶管效果好的原因[C]// 中国地球物理学会第22届年会论文集. 北京: 中国地球物理学会, 2006:265.
|
[3] |
Zhong S L, Wang R. Reasons for good effect of small and medium-sized caves and dissolved tubes by terrestrial sonar[C]// The Proceedings of 22th Annual Meeting of the Chinese Geophysical Society. Beijing: Chinese Geophysical Society, 2006:213.
|
[4] |
薛国强, 李貅. 瞬变电磁隧道超前预报成像技术[J]. 地球物理学报, 2008, 51(3):894-900.
|
[4] |
Xue G Q, Li X. The technology of TEM tunnel prediction imaging[J]. Chinese Journal of Geophysics, 2008, 51(3):894-900.
|
[5] |
邓国文, 王齐仁, 廖建平, 等. 隧道不良地质现象的探地雷达正演模拟与超前探测[J]. 物探与化探, 2015, 39(3):651-656.
|
[5] |
Deng G W, Wang Q R, Liao J P, et al. Forward modeling and advanced detection of radar in adverse geological phenomena tunnel[J]. Geophysical and Geochemical Exploration, 2015, 39(3):651-656.
|
[6] |
李术才, 刘斌, 李树忱, 等. 基于激发极化法的隧道含水地质构造超前探测研究[J]. 岩石力学与工程学报, 2011, 30(7):1297-1309.
|
[6] |
Li S C, Liu B, Li S C, et al. Study of advanced detection for tunnel water-bearing geological structures with induced polarization method[J]. Chinese Journal of Rock Mechanics and Engineering, 2011, 30(7):1297-1309.
|
[7] |
周文龙, 席超强, 胡泽安, 等. 利用并行电阻率法探测隧道施工地质条件[J]. 工程地球物理学报, 2016, 13(2):166-169.
|
[7] |
Zhou W L, Xi C Q, Hu Z A, et al. The application of parallel resistivity method to geological conditions detection of tunnel construction[J]. Chinese Journal of Engineering Geophysics, 2016, 13(2):166-169.
|
[8] |
陆云祥, 陈华根, 陈建荣, 等. 高密度电阻率法在舟山市隧道勘察中的应用[J]. 地球物理学进展, 2010, 25(6):2174-2183.
|
[8] |
Lu Y X, Chen H G, Chen J R, et al. Application of the high-density resistivity method to survey tunnels in Zhoushan city[J]. Progress in Geophysics, 2010, 25(6):2174-2183.
|
[9] |
蒋全科, 雷宛, 黄霄寒, 等. 应用综合电阻率法勘察隐伏断层[J]. 成都理工大学学报:自然科学版, 2016, 43(3):378-384.
|
[9] |
Jiang Q K, Lei W, Huang X H, et al. An application of prospecting concealed fault with multi-resistivity method[J]. Journal of Chengdu University of Technology:Science & Technology Edition, 2016, 43(3):378-384.
|
[10] |
刘树才, 刘志新, 姜志海, 等. 矿井直流电法三维正演计算的若干问题[J]. 物探与化探, 2004, 28(2):170-172,176.
|
[10] |
Liu S C, Liu Z X, Jiang Z H, et al. Some problems in 3d forward simulation of mine direct current method[J]. Geophysical and Geochemical Exploration, 2004, 28(2):170-172,176.
|
[11] |
Ruan B Y, Xiong B. A finite element modeling of 3-D resistivity sounding with continuous conductivity[J]. Chinese Journal of Geophysics, 2002, 45(1):124-131.
|
[12] |
戴世坤, 凌嘉宣, 陈轻蕊, 等. 各向异性介质空间—波数混合域直流电阻率法三维数值模拟研究[J]. 地球物理学报, 2022, 65(7):2729-2740.
|
[12] |
Dai S K, Ling J X, Chen Q R, et al. Three dimensional DC anisotropic resistivity modeling in a mixed space-wavenumber domain[J]. Chinese Journal of Geophysics, 2022, 65(7):2729-2740.
|
[13] |
罗登贵, 刘江平, 王京, 等. 活动断层高密度电法响应特征与应用研究[J]. 地球物理学进展, 2014, 29(4):1920-1925.
|
[13] |
Luo D G, Liu J P, Wang J, et al. Study on the response characteristics and application of high density resistivity method of active fault[J]. Progress in Geophysics, 2014, 29(4):1920-1925.
|
[14] |
李忠平. 基于高密度电法温纳装置的三维电阻率反演应用[J]. 地球物理学进展, 2020, 35(3):970-975.
|
[14] |
Li Z P. Application of 3-D resistivity inversion based on Winner device of high density electricity method[J]. Progress in Geophysics, 2020, 35(3):970-975.
|
[15] |
王志鹏, 刘江平, 易磊.2D、 3D高密度电法探测断层效果及其应用[J]. 科学技术与工程, 2019, 19(25):75-82.
|
[15] |
Wang Z P, Liu J P, Yi L. Effect and application of 2D and 3D high density resistivity method for fault detection[J]. Science Technology and Engineering, 2019, 19(25):75-82.
|
[16] |
朱瑞, 李朝辉, 时向阳, 等. 三维高密度电法在隐伏断层探测中的应用[J]. 人民黄河, 2019, 41(11):106-109,143.
|
[16] |
Zhu R, Li Z H, Shi X Y, et al. Application of 3D electrical resistivity tomography to buried fault detection[J]. Yellow River, 2019, 41(11):106-109,143.
|
[17] |
刘斌, 李术才, 聂利超, 等. 隧道含水构造直流电阻率法超前探测三维反演成像[J]. 岩土工程学报, 2012, 34(10):1866-1876.
|
[17] |
Liu B, Li S C, Nie L C, et al. Advanced detection of water-bearing geological structures in tunnels using 3D DC resistivity inversion tomography method[J]. Chinese Journal of Geotechnical Engineering, 2012, 34(10):1866-1876.
|
[18] |
吴荣新, 刘盛东, 张平松. 双巷并行三维电法探测煤层工作面底板富水区[J]. 煤炭学报, 2010, 35(3):454-457.
|
[18] |
Wu R X, Liu S D, Zhang P S. The exploration of two-gateways parallel 3-D electrical technology for water-rich area within coal face floor[J]. Journal of China Coal Society, 2010, 35(3):454-457.
|
[19] |
谭磊, 张平松, 吴荣新. 隐伏洞体并行电法探查试验研究[J]. 昆明理工大学学报:自然科学版, 2015, 40(2):38-43.
|
[19] |
Tan L, Zhang P S, Wu R X. Experimental study of parallel electrical imaging in concealed cave[J]. Journal of Kunming University of Science and Technology:Natural Science Edition, 2015, 40(2):38-43.
|
[20] |
张欣, 赵明阶, 汪魁, 等. 电法三维成像技术在隧道岩溶探测中的应用[J]. 中国岩溶, 2016, 35(3):291-298.
|
[20] |
Zhang X, Zhao M J, Wang K, et al. Application of 3D electrical resistivity tomography to a tunnel in a Karst area[J]. Carsologica Sinica, 2016, 35(3):291-298.
|
[21] |
张平松, 刘盛东, 吴荣新, 等. 采煤面覆岩变形与破坏立体电法动态测试[J]. 岩石力学与工程学报, 2009, 28(9):1870-1875.
|
[21] |
Zhang P S, Liu S D, Wu R X, et al. Dynamic detection of overburden deformation and failure in mining workface by 3d resistivity method[J]. Chinese Journal of Rock Mechanics and Engineering, 2009, 28(9):1870-1875.
|
[22] |
吴荣新, 刘盛东, 张平松, 等. 地面钻孔并行三维电法探测煤矿灰岩导水通道[J]. 岩石力学与工程学报, 2010, 29(S2):3585-3589.
|
[22] |
Wu R X, Liu S D, Zhang P S, et al. Detection of limestone water-conducting channels in coal mine by parallel 3d electric method of surface boreholes[J]. Chinese Journal of Rock Mechanics and Engineering, 2010, 29(S2):3585-3589.
|
[23] |
Loke M H, Dahlin T. A comparison of the Gauss-Newton and quasi-Newton methods in resistivity imaging inversion[J]. Journal of Applied Geophysics, 2002, 49(3):149-162.
|
[24] |
Loke M H, Barker R D. Practical techniques for 3D resistivity surveys and data inversion 1[J]. Geophysical Prospecting, 1996, 44(3):499-523.
|
[25] |
刘盛东, 吴荣新, 张平松, 等. 三维并行电法勘探技术与矿井水害探查[J]. 煤炭学报, 2009, 34(7):927-932.
|
[25] |
Liu S D, Wu R X, Zhang P S, et al. Three-dimensional parallel electric surveying and its applications in water disaster exploration in coal mines[J]. Journal of China Coal Society, 2009, 34(7):927-932.
|
[26] |
任政勇, 汤井田. 基于局部加密非结构化网格的三维电阻率法有限元数值模拟[J]. 地球物理学报, 2009, 52(10):2627-2634.
|
[26] |
Ren Z Y, Tang J T. Finite element modeling of 3-D DC resistivity using locally refined unstructured meshes[J]. Chinese Journal of Geophysics, 2009, 52(10):2627-2634.
|
[27] |
周文龙, 吴荣新, 肖玉林. 充水溶洞特征的高密度电阻率法反演分析研究[J]. 中国岩溶, 2016, 35(6):699-705.
|
[27] |
Zhou W L, Wu R X, Xiao Y L. Back analysis of high density resistivity method in the water-bearing Karst cave[J]. Carsologica Sinica, 2016, 35(6):699-705.
|
[28] |
欧元超, 张平松, 李建宁, 等. 基于并行电法的重阳木根系空间分布探测试验研究[J]. 科学技术与工程, 2017, 17(10):131-135.
|
[28] |
Ou Y C, Zhang P S, Li J N, et al. Bischofia polycarpa root spatial distribution detection test research based on parallel electrical method[J]. Science Technology and Engineering, 2017, 17(10):131-135.
|
[1] |
ZHANG Xue-Ang, YANG Zhi-Chao, LI Xiao-Yan, DONG Li-Yuan. Simulation of epithermal neutron migration in fractured sandstone-hosted uranium deposits with variable porosities and dip angles[J]. Geophysical and Geochemical Exploration, 2023, 47(6): 1547-1554. |
[2] |
ZHOU Jian-Bing, LUO Rui-Heng, HE Chang-Kun, PAN Xiao-Dong, ZHANG Shao-Min, PENG Cong. New geophysical evidence for karst water-bearing seepage pathways in the Xiaohewei reservoir,Wenshan City[J]. Geophysical and Geochemical Exploration, 2023, 47(3): 707-717. |
|
|
|
|