|
|
Development of a digital γ spectral logging probe |
CHEN Yuan-Qing( ), HUANG Qing-Bo, LIU Jin-Yao, WANG Xian-He, HUANG Liang, WU Wei-Jun |
Airborne Survey and Remote Sensing Center of Nuclear Industry,Shijiazhuang 050011,China |
|
|
Abstract Given that it is difficult to accurately determine the uranium and thorium contents in the strata of uranium-thorium mixed deposits,this study developed a digital γ spectrum logging probe based on cerium tribromide (CeBr3) crystals.Using CeBr3 crystals with a diameter of 38 mm×38 mm,the logging probe improved the sensitivity to uranium and the detection efficiency of ore beds with low uranium and thorium contents.The logging probe operated as follows.First,the original signals from the CeBr3 detector were filtered and shaped using the C8051 single-chip microcomputer as the core processor.Then,the γ spectrum data were obtained using the energy spectrum collector.After the spectrum unfolding based on the inverse matrix is performed for the γ spectrum data,precise uranium and thorium contents in the ore beds were obtained.Finally,the γ spectrum data were transmitted to the host computer for logging through the RS-485 bus.The results show that the logging probe had high measurement accuracy in the standard uranium-thorium mixed model,with indication errors of less than 6%,stability of less than 1.5%,and repeatability of less than 1%.Moreover,the 2.62 MeV energy peak drift of thorium 208Tl did not exceed ±0.3 channels,and the relative errors of log anomalies were less than 4%.Therefore,the digital γ spectrum logging probe proposed in this study is applicable to the exploration and logging of uranium deposits.
|
Received: 15 September 2022
Published: 26 February 2024
|
|
|
|
|
晶体 材料 | 光产额 /(光子/ keV) | 衰减时间 /ns | 密度/(g· cm-3) | 分辨率% /@662keV | 温度影 响系数 /(%·oC-1) | 碘化钠 | 38 | 250 | 3.67 | 7~8 | -0.3 | 溴化镧 | 63 | 35 | 5.29 | 3.5~4.5 | 0 | 锗酸铋 | 8~10 | 300 | 7.13 | 10~15 | -1.2 | 溴化铈 | 68 | 16.8 | 5.1 | 4.5~6 | 0 |
|
Parameter table of crystal materials
|
|
Block diagram of energy spectrum acquisition circuit
|
|
Instrument physical picture of γ-ray spectrum logging instrument
|
|
Spectrum stabilization algorithm flow
|
| 钾窗计数 | 铀窗计数 | 钍窗计数 | 总计数 | 9组平均值 | 34846.33 | 94479.56 | 16790.11 | 2681818.33 | 相对标准偏差/% | 0.55 | 0.60 | 0.77 | 0.29 | 最大偏差/% | 1.09 | 1.02 | 1.37 | 0.46 |
|
Instrument stability test
|
| 钾窗计数 率/s-1 | 铀窗计数 率/s-1 | 钍窗计数 率/s-1 | 总计数率/ s-1 | 10组平均值 | 206.57 | 604.39 | 26.01 | 15850.82 | 均方差 | 0.66 | 1.31 | 0.20 | 31.56 | 重复性 | 0.32% | 0.22% | 0.76% | 0.20% |
|
Instrument repeatability test
|
序号 | 温度/℃ | 光电倍增管高压/V | 208Tl峰位/道 | 1 | -5.2 | 528.6 | 429.8 | 2 | 0.2 | 529.6 | 429.9 | 3 | 5.0 | 529.7 | 429.7 | 4 | 10.3 | 530.1 | 429.8 | 5 | 14.5 | 530.1 | 429.9 | 6 | 20.6 | 531.1 | 429.9 | 7 | 26.0 | 532.1 | 430.1 | 8 | 30.8 | 534.2 | 430.0 | 9 | 35.0 | 536.1 | 430.1 | 10 | 41.1 | 539.6 | 430.1 | 11 | 45.2 | 543.9 | 430.0 | 12 | 50.5 | 550.0 | 430.0 | 13 | 54.6 | 557.6 | 430.1 | 14 | 60.4 | 570.6 | 430.0 | 15 | 64.8 | 587.0 | 430.1 | 16 | 70.4 | 617.4 | 430.1 | 17 | 74.5 | 638.6 | 430.0 | 18 | 80.1 | 662.4 | 430.1 |
|
Instrument spectrum stabilization effect test
|
模型 | 钾窗 计数 | 铀窗 计数 | 钍窗 计数 | 总计数 | 测量时间/s | F-0-I | 0.60 | 1.20 | 0.11 | 33.03 | 1 | KF-6-I | 4.34 | 5.60 | 0.17 | 108.64 | 1 | UF-0.2-I | 193.67 | 581.01 | 7.55 | 15712.50 | 1 | ThF-0.3-I | 90.78 | 213.20 | 81.25 | 8835.31 | 1 | UThF-0.01-0.03-I | 18.65 | 48.50 | 9.40 | 1594.65 | 1 | UThF-0.2-0.07-I | 207.81 | 604.34 | 26.65 | 17222.86 | 1 | UThF-0.07-0.2-I | 115.65 | 314.02 | 55.12 | 10465.10 | 1 |
|
Record of measurement data from model sources
|
模型体源 | 核素 | 标称值/ (10-6g·g-1) | 测量值/ (10-6g·g-1) | 示值误 差/% | UThF-0.01-0.03-I | 铀 | 99 | 98.54 | -0.46 | 钍 | 322 | 337.40 | 4.78 | UThF-0.2-0.07-I | 铀 | 2050 | 2168.70 | 5.79 | 钍 | 712 | 741.79 | 4.18 | UThF-0.07-0.2-I | 铀 | 693 | 717.08 | 3.47 | 钍 | 1969 | 1968.61 | -0.02 |
|
Indication error test
|
|
Logging curve of bore hole BC1002 a—FD-3019 total count logging curve; b—U-window logging curve of digital gamma-ray spectrum logging probe
|
井孔编号 | 起始深度/m | 结束深度/m | 厚度/m | 平米铀量/(kg·m-2) | 相对误差/% | FD-3019 | 数字化γ能谱测井探管 | BC1002 | 95.05 | 102.05 | 7.0 | 0.01329 | 0.01283 | -3.5 | BC4802 | 90.65 | 92.35 | 1.7 | 1.4934 | 1.4635 | -2.0 | WTZK491-157 | 89.55 | 97.85 | 8.3 | 2.0665 | 2.0356 | -1.5 |
|
Layer interpretation result
|
[1] |
杨玉勤, 张翔, 石连成, 等. 砂岩型铀矿航磁微弱异常提取方法[J]. 物探与化探, 2021, 45(1):29-36.
|
[1] |
Yang Y Q, Zhang X, Shi L C, et al. A study of the method of extracting aeromagnetic weak anomalies from sandstone-type uranium deposits[J]. Geophysical and Geochemical Exploration, 2021, 45(1):29-36.
|
[2] |
杨再超. 自然伽马能谱测井应用研究[J]. 电脑知识与技术, 2016, 12(14):234-235.
|
[2] |
Yang Z C. Study on application of natural gamma-ray spectrometry logging[J]. Computer Knowledge and Technology, 2016, 12(14):234-235.
|
[3] |
张金带, 李子颖, 蔡煜琦, 等. 全国铀矿资源潜力评价工作进展与主要成果[J]. 铀矿地质, 2012, 28(6):321-326.
|
[3] |
Zhang J D, Li Z Y, Cai Y Q, et al. The main advance and achievements in the potential evaluation of uranium resource in China[J]. Uranium Geology, 2012, 28(6):321-326.
|
[4] |
陈凯, 阳正勇, 周荣辉, 等. 阿尔布拉格地区地面伽马能谱特征及与铀成矿关系分析研究[J]. 物探与化探, 2018, 42(4):703-707.
|
[4] |
Chen K, Yang Z Y, Zhou R H, et al. The ground gamma energy spectrum in Aerbulage area and its relationship with uranium mineralization[J]. Geophysical and Geochemical Exploration, 2018, 42(4):703-707.
|
[5] |
汤彬. 核辐射测量原理[M]. 哈尔滨: 哈尔滨工程大学出版社, 2011.
|
[5] |
Tang B. Principle of nuclear radiation measurement[M]. Harbin: Harbin Engineering University Press, 2011.
|
[6] |
甘霖. LaBr3探测器本底扣除方法研究及软件设计[D]. 成都: 成都理工大学, 2015.
|
[6] |
Gan L. Background deduction method research and software design in LaBr3γ energy spectrum[D]. Chengdu: Chengdu University of Technology, 2015.
|
[7] |
周倩倩, 侯越云, 梁珺成, 等. 一种新型溴化铈闪烁体探测器性能研究[J]. 原子能科学技术, 2018, 52(2):371-377.
|
[7] |
Zhou Q Q, Hou Y Y, Liang J C, et al. Study on performance of a novel CeBr3 scintillator detector[J]. Atomic Energy Science and Technology, 2018, 52(2):371-377.
|
[8] |
李传伟, 廖琪梅, 李安宗, 等. 自然伽马能谱解谱方法研究[J]. 核电子学与探测技术, 2008, 28(4):796-800.
|
[8] |
Li C W, Liao Q M, Li A Z, et al. Study on the methods of spectrum skipping for spectrum gamma logging[J]. Nuclear Electronics & Detection Technology, 2008, 28(4):796-800.
|
[9] |
国防科技工业1313二级计量站. JJG(军工)27-2012 γ测井仪检定规程[S].
|
[9] |
National Defense Technology Industry 1313 Secondary Measurement Station. JJG (Military Industry) 27-2012 γ Verification Regulation for Logging Tools[S].
|
[1] |
ZHANG Jing, WANG Yong, ZHAO Hui-Yan, HENG De, HUANG Jun, ZHANG Xiao-Dan, WANG Wen-Wen, HE Yan-Bing. Prestack seismic inversion of fluid factors in fractured reservoirs based on the global adaptive MCMC algorithm[J]. Geophysical and Geochemical Exploration, 2024, 48(1): 105-112. |
[2] |
AN Guo-Qiang, LU Bao-Liang, GAO Xin-Yu, ZHU Wu, LI Bo-Sen. 3D correlation tomography inversion of gravity anomalies constrained by edge features and depth weighting[J]. Geophysical and Geochemical Exploration, 2024, 48(1): 113-124. |
|
|
|
|