|
|
Classification of carbonate reservoirs based on pore throat radius distributions |
ZHAO Bing( ) |
Exploration and Development Research Institute,Sinopec Jianghan Oilfield Company,Wuhan 430074,China |
|
|
Abstract Since carbonate reservoirs characterized by diverse reservoir spaces and high heterogeneity exhibit intricate internal pore structures,conventional petrophysical classification methods fail to accurately classify these reservoirs,especially the reservoirs with complex porous systems whose pore throat radii manifest a multimodal(e.g.,bimodal,and trimodal) distribution.By investigating the M Formation's carbonate reservoirs in an oil field in the Middle East,this study clarified that the internal pore structures of rocks determine the pore throat radius distribution,which in turn affects the classification of rocks.Hence,starting with the pore throat size distribution,and considering the contribution of pore components corresponding to each peak in the multimodal samples to the rock reservoir space and seepage capacity,this study proposed a pore throat radius parameter Rmax* combining pore throat sizes and their proportions to characterize the pore structures of rocks based on the cumulative permeability curve.Then,this study classified the selected 114 bimodal and 43 trimodal rock samples.Moreover,the characteristics of each type of reservoir were examined in depth by combining with physical properties,mercury injection data,thin-section observational data,and logs.The results of this study show that Rmax* can better characterize the pore structures of reservoirs and improve the reservoir classification effectiveness compared with the classification based on a single pore throat radius(R35,corresponding to mercury saturation of 35%).
|
Received: 26 December 2022
Published: 26 February 2024
|
|
|
|
|
样品 | 孔隙度/% | 渗透率/mD | R35/μm | 毛管压力曲线 | 孔喉半径分布 | 铸体薄片 | 1-1 | 26.04 | 9.35 | 1.09 |  | 1-2 | 25.84 | 12.34 | 0.96 |  | 2-1 | 16.59 | 2.55 | 0.67 |  | 2-2 | 17.59 | 1.83 | 0.60 |  |
|
Comparison of core analysis data with similar R35 values
|
|
Rmax* parameter extraction of monomodal
|
|
R35 versus Rmax*
|
|
Semi-log plot of pore throat radius
|
|
The pore-permeability distribution
|
|
The capillary pressure curve for each type a—the capillary pressure curve for each type based on Rmax* classification;b—the capillary pressure curve for each type based on R35 classification
|
|
The pore throat radius distribution for each type of Rmax*
|
|
The histogram of lithologic distribution for each type a—the capillary pressure curve for each type based on Rmax* classification;b—the capillary pressure curve for each type based on R35 classification
|
|
Comparison of classification effect on logging data
|
[1] |
Weger R J, Eberli G P, Baechle G T, et al. Quantification of pore structure and its effect on sonic velocity and permeability in carbonates[J]. AAPG Bulletin, 2009, 93(10):1297-1317.
|
[2] |
李峰峰, 郭睿, 孙昭, 等. 中东M油田Mishrif组碳酸盐岩储集层分类及主控因素[J]. 东北石油大学学报, 2021, 45(5):1-12,131.
|
[2] |
Li F F, Guo R, Sun Z, et al. Classification and main controlling factors of carbonate reservoir of Mishrif Formation,M Oilfield in the Middle East[J] [J]. Journal of Northeast Petroleum University, 2021, 45(5):1-12,131.
|
[3] |
谭学群, 廉培庆. 碳酸盐岩油藏岩石分类方法研究[J]. 科学技术与工程, 2013, 13(14):3963-3967.
|
[3] |
Tan X Q, Lian P Q. Classification research on rock typing of carbonate reservoir[J]. Science Technology and Engineering, 2013, 13(14):3963-3967.
|
[4] |
Folk R L. Practical petrographic classification of limestones[J]. AAPG Bulletin, 1959, 43(1):1-38.
|
[5] |
Eberli G P, Baechle G T, Anselmetti F S, et al. Factors controlling elastic properties in carbonate sediments and rocks[J]. The Leading Edge, 2003, 22(7):654-660.
|
[6] |
冯进, 赵冰, 张占松, 等. 珠江口盆地惠州凹陷储层测井产能分级与识别方法[J]. 物探与化探, 2020, 44(1):81-87.
|
[6] |
Feng J, Zhao B, Zhang Z S, et al. Classification and identification method of reservoir logging capacity in Huizhou depression of Pearl River mouth basin[J]. Geophysical and Geochemical Exploration, 2020, 44(1):81-87.
|
[7] |
Lonoy A. Making sense of carbonate pore systems[J]. AAPG Bulletin, 2006, 90(9):1381-1405.
|
[8] |
Purcell W R. Capillary pressures-their measurement using mercury and the calculation of permeability therefrom[J]. Journal of Petroleum Technology, 1949, 1(2):39-48.
|
[9] |
王小敏, 樊太亮. 碳酸盐岩储层渗透率研究现状与前瞻[J]. 地学前缘, 2013, 20(5):166-174.
|
[9] |
Wang X M, Fan T L. Progress of research on permeability of carbonate rocks[J]. Earth Science Frontiers, 2013, 20(5):166-174.
|
[10] |
王永诗, 高阳, 方正伟. 济阳坳陷古近系致密储集层孔喉结构特征与分类评价[J]. 石油勘探与开发, 2021, 48(2):266-278.
|
[10] |
Wang Y S, Gao Y, Fang Z W, et al. Pore throat structure and classification of Paleogene tight reservoirs in Jiyang depression,Bohai Bay Basin,China[J]. Petroleum Exploration and Development, 2021, 48(2):266-278.
|
[11] |
田瀚, 王贵文, 冯庆付, 等. 碳酸盐岩储层复杂孔隙结构研究现状及进展[J]. 科学技术与工程, 2020, 20(29):11825-11833.
|
[11] |
Tian H, Wang G W, Feng Q F, et al. Review and prospective of complex pore structure of carbonate reservoir[J]. Science Technology and Engineering, 2020, 20(29):11825-11833.
|
[12] |
Schowalter T T. Mechanics of secondary hydrocarbon migration and entrapment[J]. AAPG Bulletin, 1979, 63(5):723-760.
|
[13] |
Pittman E D. Relationship of porosity and permeability to various parameters derived from mercury injection-capillary pressure curves for sandstone (1)[J]. AAPG Bulletin, 1992, 76(2):191-198.
|
[14] |
Torres-Verdin C, Nelaon P. Permeability,porosity,and pore-throat size? A three-dimensional perspective[J]. Petrophysics, 2005, 46(6):452-455.
|
[15] |
张萌, 乔占峰, 高计县, 等. 伊拉克哈法亚油田Mishrif组MB1-2亚段局限台地碳酸盐岩储层特征及评价[J]. 东北石油大学学报, 2020, 44(5):35-45,7.
|
[15] |
Zhang M, Qiao Z F, Gao J X, et al. Characteristics and evaluation of carbonate reservoirs in restricted platform in the MB1-2 Sub-Member of Mishrif Formation,Halfaya Oilfield,Iraq[J]. Journal of Northeast Petroleum University, 2020, 44(5):35-45,7.
|
[16] |
王金娜, 王德海, 李宗宇, 等. 巴什托油气田石炭系巴楚组碳酸盐岩储层特征及控制因素[J]. 东北石油大学学报, 2019, 43(1):75-86,10.
|
[16] |
Wang J N, Wang D H, Li Z Y, et al. Characteristics and controlling factors of carbonate reservoir of Carboniferous Bachu Formation in Bashituo Oilfield[J]. Journal of Palaeogeography, 2019, 43(1):75-86,10.
|
[17] |
Tucher M E, Wright V P. Carbonate sedimentology[M]. London: Blackwell Scientific Publications,1990.
|
[18] |
刘航宇, 田中元, 郭睿, 等. 复杂碳酸盐岩储层岩石分类方法研究现状与展望[J]. 地球物理学进展, 2017, 32(5):2057-2064.
|
[18] |
Liu H Y, Tian Z Y, Guo R, et al. Review and prospective of rock-typing for complex carbonate reservoirs[J]. Progress in Geophysics, 2017, 32(5):2057-2064.
|
[19] |
石磊, 管耀, 冯进, 等. 基于多级次流动单元的砂砾岩储层分类渗透率评价方法——以陆丰油田古近系文昌组W53油藏为例[J]. 物探与化探, 2022, 46(1):78-86.
|
[19] |
Shi L, Guan Y, Feng J, et al. Multi-level division method of flow units for accurate permeability assessment of glutenite reservoirs:A case study of reservoir W53 of Paleogene Wenchang Formation in Lufeng oilfield[J]. Geophysical and Geochemical Exploration, 2022, 46(1):78-86.
|
[20] |
刘航宇, 田中元, 徐振永. 基于分形特征的碳酸盐岩储层孔隙结构定量评价[J]. 岩性油气藏, 2017, 29(5):97-105.
|
[20] |
Liu H Y, Tian Z Y, Xu Z Y. Quantitative evaluation of carbonate reservoir pore structure based on fractal characteristics[J]. Lithologic Reservoirs, 2017, 29(5):97-105.
|
[21] |
邱隆伟, 周涌沂, 高青松, 等. 大牛地气田石炭系—二叠系致密砂岩储层孔隙结构特征及其影响因素[J]. 油气地质与采收率, 2013, 20(6):15-18,22,112.
|
[21] |
Qiu L W, Zhou Y X, Gao Q S, et al. Study of porosity structure and its influences on Carboniferous and Permian tight sand reservoir rock in Danniudi gasfield,Ordos basin Petroleum[J]. Geology and Recovery Efficiency, 2013, 20(6):15-18,22,112.
|
[22] |
葛东升, 蔡振华, 刘灵童, 等. 鄂尔多斯盆地东缘临兴地区太原组太2段致密砂岩储层孔隙结构及渗流特征分析[J]. 非常规油气, 2020, 7(6):11-17.
|
[22] |
Ge D S, Cai Z H, Liu L T, et al. Analysis on microscopic pore atructure and aeepage characteristics of tight sandstone reservoir of Tai 2 Section of Taiyuan Formation in Linxing area,Ordos Basin[J]. Unconventional Oil & Gas, 2020, 7(6):11-17.
|
[23] |
Al-qenae K J, Al-thaqafi S H, Al-khafji J O. New approach for the classification of rock Typing using a new technique for iso-pore throat lines in Winland’s Plot[C]// Baku: SPE Annual Caspian Technical Conference and Exhibition, 2015.
|
[24] |
邱隆伟, 周涌沂, 高青松, 等. 大牛地气田石炭系—二叠系致密砂岩储层孔隙结构特征及其影响因素[J]. 油气地质与采收率, 2013, 20(6):15-18,22,112.
|
[24] |
Qiu L W, Zhou Y Y, Gao Q S, et al. Study of porosity structure and its influences on Carboniferous and Permian tight sand reservoir rock in Danniudi gasfield,Ordos basin Petroleum[J]. Geology and Recovery Efficiency, 2013, 20(6):15-18,22,112.
|
[25] |
葛东升, 蔡振华, 刘灵童, 等. 鄂尔多斯盆地东缘临兴地区太原组太2段致密砂岩储层孔隙结构及渗流特征分析[J]. 非常规油气, 2020, 7(6):11-17.
|
[25] |
Ge D S, Cai Z H, Liu L T, et al. Analysis on microscopic pore structure and seepage characteristics of tight sandstone reservoir of Tai 2 section of Taiyuan Formation in Linxing area,Ordos Basin[J]. Unconventional Oil & Gas, 2020, 7(6):11-17.
|
[26] |
李峰峰, 郭睿, 刘立峰, 等. 伊拉克M油田白垩系Mishrif组潟湖环境碳酸盐岩储集层成因机理[J]. 地球科学, 2021, 46(1):228-241.
|
[26] |
Li F F, Guo R, Liu L F, et al. Genesis of reservoirs of lagoon in the mishrif Formation,M oilfield,Iraq[J]. Earth Science, 2021, 46(1):228-241.
|
[27] |
王瑞, 朱筱敏, 陈烨菲, 等. 滨里海盆地肯基亚克地区中、下石炭统碳酸盐岩储层特征与成岩作用[J]. 石油与天然气地质, 2012, 33(2):225-235.
|
[27] |
Wang R, Zhu X M, Chen Y F, et al. Diagenesis and reservoir characteristics of the Lower-Middle Carboniferous carbonates in Kenkyak area Pre-Caspian Basin[J]. Oil & Gas Geology, 2012, 33(2):225-235.
|
[1] |
ZHANG Zhao, YIN Quan-Zeng, ZHANG Long-Fei, ZHANG Da-Ming, ZHANG Shi-Hui, HUANG Guo-Shu, ZHAO Shi-Feng, YANG Biao, TAI Li-Xun, ZHANG Deng-Liang, WANG Jin-Chao, DUAN Gang. Application of the integrated geophysical exploration technology in the exploration of deep carbonate geothermal reservoirs: A case study of the Xiong'an New Area[J]. Geophysical and Geochemical Exploration, 2023, 47(4): 926-935. |
[2] |
DAN Guang-Jian, ZHOU Cheng-Gang, LIU Yun-Hong, LI Xiang-Wen, ZHANG Liang-Liang, ZHANG Ming, WANG Chun-Yang. Seismic characteristics of the paleo-underground river system in Ordovician carbonate paleo-buried hills in the western Lungu area[J]. Geophysical and Geochemical Exploration, 2023, 47(2): 290-299. |
|
|
|
|