|
|
Simulation of epithermal neutron migration in fractured sandstone-hosted uranium deposits with variable porosities and dip angles |
ZHANG Xue-Ang1( ), YANG Zhi-Chao2, LI Xiao-Yan1, DONG Li-Yuan1 |
1. School of Nuclear Science and Engineering, East China University of Technology, Nanchang 330013, China 2. School of Geophysics and Measurement-control Technology, East China University of Technology, Nanchang 330013, China |
|
|
Abstract Uranium ores, as a significant clean energy source, have been highly anticipated in the field of geological exploration. However, fractured sandstone-hosted uranium deposits (pore-fissure type uranium deposits) face challenges in exploration because of their complex structures. Therefore, to quantify such uranium deposits, it is necessary to investigate the response relationships between the occurrence state and content of uranium and the parameters of geological structures (pores and fissures). This study simulated the neutron migration in the pore-fissure type sandstone-hosted uranium deposits using the prompt neutron log technology and the directive probability simulation algorithm. Through an ideal model, this study focused on the effects of fracture structures on neutron logs. The results are as follows: (1) The effects of fissure porosity on epithermal neutron migration intensified significantly with an increase in porosity, accompanied by substantially enhanced log response sensitivity; (2) The epithermal neutron accumulation peaks exhibit a multi-point distribution in a nearly vertical fissure environment; (3) The fracture environment with high dip angles manifested the most significant attenuation effect on the neutron energy and time spectrum peaks, and the neutron time spectrum peaks tended to move to the low-dip-angle interval with an increase in porosity; (4) In the fracture environment with variable dip angles, there was a linear relationship between the porosity and the epithermal neutron count ratio, which can assist in correcting the uranium content range in fracture environments at specific angles. The above results can provide a theoretical reference for the exploration of fractured sandstone-hosted uranium deposits and other uranium deposits in a complex environment and improve the quantitative accuracy of uranium deposits.
|
Received: 30 January 2023
Published: 23 January 2024
|
|
|
|
|
|
Schematic diagram of borehole environment
|
序号 | 成分 | 含量占比/% | 1 | SiO2 | 54.963 | 2 | CaO | 16.711 | 3 | Al2O3 | 9.434 | 4 | CaCO3 | 8.335 | 5 | K2O | 5.438 | 6 | TiO2 | 2.264 | 7 | FeO | 1.640 | 8 | MgO | 1.215 |
|
Main material composition of borehole environment
|
角度/(°) | 占比/% | 70°~90° | 12.3 | 40°~70° | 44.7 | 0°~40° | 43.0 |
|
Fracture angle in experimental sampling environment
|
元素 | 含量/10-6 | La | 24.36 | Ce | 48.13 | Pr | 6.25 | Nd | 18.89 | Sm | 4.04 | Eu | 0.69 | Gd | 3.22 | Tb | 0.96 | Dy | 3.72 | Ho | 0.51 | Er | 1.92 | Tm | 0.23 | Yb | 1.09 | Lu | 0.47 |
|
Rare earth elements list
|
|
Epithermal neutron density transport in variably angular fractured sandstone uranium ore under different porosity conditions
|
|
Epithermal neutron density transport sensitivity in variably parameters fractured sandstone uranium ore
|
|
Energy count peak spectra at different fracture angles and porosity
|
|
Time count peak spectra at different fracture angles and porosity
|
|
Relationship between fracture porosity and epithermal neutron ratio
|
|
Epithermal neutron density transport in variably angular fractured sandstone uranium ore
|
[1] |
李鹏举, 李勇勇, 徐茂河, 等. 地层水矿化度对补偿中子测井影响的自动校正方法研究[J]. 物探与化探, 2019, 43(4):815-821.
|
[1] |
Li P J, Li Y Y, Xu M H, et al. A study of automatic correction method for the influence of formation water salinity on compensating neutron logging[J]. Geophysical and Geochemical Exploration, 2019, 43(4):815-821.
|
[2] |
Wood D A. Gamma-ray log derivative and volatility attributes assist facies characterization in clastic sedimentary sequences for formulaic and machine learning analysis[J]. Advances in Geo-Energy Research, 2022, 6(1):69-85.
|
[3] |
张雪昂, 杨志超, 魏雄. 水层多角度裂缝介质中子测井响应数值模拟[J]. 物探与化探, 2018, 42(6):1221-1227.
|
[3] |
Zhang X A, Yang Z C, Wei X. Water layer neutron logging in multi-angle crack environment[J]. Geophysical and Geochemical Exploration, 2018, 42(6):1221-1227.
|
[4] |
Sun Q F, Li N, Duan Y X, et al. Logging-while-drilling formation dip interpretation based on long short-term memory[J]. Petroleum Exploration and Development, 2021, 48(4):978-986.
|
[5] |
Gama J, Schwark L. Lithofacies of early Jurassic successions derived from spectral gamma ray logging in the Mandawa Basin, SE Tanzania[J]. Arabian Journal of Geosciences, 2022, 15(16):1373.
|
[6] |
Han R Y, Wang Z W. Monte Carlo simulation of scintillation crystal detector for formation element logging[J]. Global Geology, 2019, 22(2):128-132.
|
[7] |
张雪昂, 杨志超, 魏雄. 裂缝型铀矿环境中子测井数值模拟[J]. 东华理工大学学报:自然科学版, 2019, 42(1):68-73.
|
[7] |
Zhang X A, Yang Z C, Wei X. Numerical simulation of neutron logging in fracture uranium environment[J]. Journal of East China University of Technology:Natural Science, 2019, 42(1):68-73.
|
[8] |
Kang D J, Xie Y F, Lu J G, et al. Assessment of natural gas hydrate reservoirs at Site GMGS3-W19 in the Shenhu area, South China Sea based on various well logs[J]. China Geology, 2022, 5(3):383-392.
|
[9] |
宋非, 刘志锋, 罗建彪, 等. 铀裂变瞬发中子测井套管影响MC模拟修正[J]. 核电子学与探测技术, 2020, 40(6):927-931.
|
[9] |
Song F, Liu Z F, Luo J B, et al. Casing influences in uranium fission prompt neutron logging based on MC simulation correction[J]. Nuclear Electronics and Detection Technology, 2020, 40(6):927-931.
|
[10] |
赖毅辉, 王海涛, 陈锐. 瞬发中子测井的铀矿井眼实时校正方法研究[J]. 核技术, 2021, 44(6):55-59.
|
[10] |
Lai Y H, Wang H T, Chen R. Real-time correction method of uranium mine caliper based on prompt neutron well logging[J]. Nuclear Techniques, 2021, 44(6):55-59.
|
[11] |
Zhang L, Yu H W, Li Y, et al. Improved formation density measurement using controllable D-D neutron source and its lithological correction for porosity prediction[J]. Nuclear Science and Techniques, 2022, 33(1):26-36.
|
[12] |
Zhang F, Chen S Q, Liu T, et al. A quantitative calculation method for fracture density using the neutron self-shielding modification and neutron-induced gamma logging[J]. Geophysics:Journal of the Society of Exploration Geophysicists, 2022, 87(3):D91-D100.
|
[13] |
肖才锦, 张贵英, 袁国军, 等. 缓发中子标准衰减曲线法用于铀的定量研究[J]. 核技术, 2015, 38(12):24-28.
|
[13] |
Xiao C J, Zhang G Y, Yuan G J, et al. Study on standard decay curve method in uranium determination by delayed neutron counting[J]. Nuclear Techniques, 2015, 38(12):24-28.
|
[14] |
Darmovzalova J, Boghi A, Otten W, et al. Uranium diffusion and time-dependent adsorption-desorption in soil: A model and experimental testing of the model[J]. European Journal of Soil Science, 2020, 71(2):215-225.
|
[15] |
李坡, 杨立志, 赵利信, 等. 非均匀地应力条件下新疆某铀矿地浸井套管稳定性研究[J]. 铀矿冶, 2022, 41(4):368-376.
|
[15] |
Li P, Yang L Z, Zhao L X, et al. Study on casing stability under non-uniform ground stress for in-situ leaching well of a uranium deposit in Xinjiang[J]. Uranium Mining and Metallurgy, 2022, 41(4):368-376.
|
[16] |
Malik P P, Maity J. Synthesis and leaching behaviour of borosilicate glasses containing uranium as radioactive waste[J]. Journal of the Indian Chemical Society, 2020, 97(12c):2909-2913.
|
[17] |
Buckner M Q, Wu C Y, Henderson R A, et al. Measurement of the 242mAm neutron-induced reaction cross sections[J]. Physical Review C, 2017, 95(2):024610.
|
[18] |
Zhang S X, Zou C C, Peng C, et al. Abnormally high natural radioactivity zones in the main borehole of the continental scientific drilling project of cretaceous songliao basin:Geophysical log responses and genesis analysis[J]. Chinese Journal of Geophysics, 2018, 61(11):4712-4728.
|
[19] |
梁永顺, 管少斌, 李峰林. 瞬发裂变中子测井与γ测井在砂岩型铀矿钻孔的对比[J]. 宇航计测技术, 2016, 36(3):68-73.
|
[19] |
Liang Y S, Guang S B, Feng L L I. Comparisons of prompt fission neutron logging and gamma logging applied in sandstone-type uranium ore drill holes[J]. Journal of Astronautic Metrology and Measurement, 2016, 36(3):68-73.
|
[20] |
谢新宇, 许文军, 何昌鸿. 瞬发裂变中子测井中水层厚度影响的研究[J]. 西部探矿工程, 2019, 31(4):121-122.
|
[20] |
Xie X Y, Xu W J, He C H. Study of the effect of water layer thickness in transient fission neutron logging[J]. West China Exploration Engineering, 2019, 31(4):121-122.
|
[21] |
Wang D, Zhang C F, Li B J, et al. Simulation of suppression of gamma sensitivity of fission electron-collection' neutron detector[J]. Chinese Physics Letters, 2016, 33(5):30-33.
|
[22] |
张龙, 陈振宇, 李胜荣, 等. 粤北棉花坑(302)铀矿床围岩蚀变分带的铀矿物研究[J]. 岩石学报, 2018, 34(9):2657-2670.
|
[22] |
Zhang L, Chen Z Y, Li S R, et al. Characteristics of uranium minerals in wall-rock alteration zones of the Mianhuakeng (No.302) uranium deposit, northern Guangdong, South China[J]. Acta Petrologica Sinica, 2018, 34(9):2657-2670.
|
[23] |
李英宾, 李毅, 魏滨, 等. CSAMT和浅层地震在松辽盆地西南部铀矿勘查中的应用[J]. 地质与勘探, 2019, 55(6):1442-1451.
|
[23] |
Li Y B, Li Y, Wei B, et al. Application of CSAMT and shallow seismic reflection to uranium exploration in south western Songliao Basin[J]. Geology and Exploration, 2019, 55(6):1442-1451.
|
[24] |
郑欣, 汪永宏. 我国沉积盆地中油气藏与砂岩型铀矿“同盆共存”关系研究[J]. 地下水, 2019, 41(5):107-109,176.
|
[24] |
Zheng X, Wang Y H. The relationship study between oil and gas reservoirs and sandstone-type uranium deposits in the same sedimentary basin in China[J]. Ground Water, 2019, 41(5):107-109,176.
|
[25] |
喻翔, 汪硕, 胡英才, 等. 二连盆地北部玄武岩覆盖区电性结构与铀成矿环境研究[J]. 物探与化探, 2022, 46(5):1157-1166.
|
[25] |
Yu X, Wang S, Hu Y C, et al. Study on electrical structure and uranium metallogenic environment of basalt-covered area in the northern Erlian Basin[J]. Geophysical and Geochemical Exploration, 2022, 46(5):1157-1166.
|
[26] |
Zhang X A, Yang Z C, Tang B, et al. Distinguishing oil and water layers in a cracked porous medium using pulsed neutron logging data based on Hudson's crack theory[J]. Geophysical Journal International, 2018, 213(3):1345-1359.
|
[27] |
Zhang X A, Yang Z C, Li X Y. Simulation of multi-angle fractured uranium deposits by neutron logging[J]. Geophysical Journal International, 2020, 223(3):2027-2037.
|
[1] |
WANG Yong-Fei, DONG Zhi-Kai, LYU Wen-Xiang, LI Bao-Xin, MA Bing. Zoning characteristics of uranium and associated elements in the No. 510 uranium deposit, Sichuan[J]. Geophysical and Geochemical Exploration, 2023, 47(4): 881-891. |
[2] |
WANG Yu-Cheng, WANG Hong-Hua, SU Peng-Jin, GONG Jun-Bo, XI Yu-He. Simulated detection experiments of underground water supply pipeline leakage based on ground penetrating radar[J]. Geophysical and Geochemical Exploration, 2023, 47(3): 794-803. |
|
|
|
|