|
|
Distribution of microorganisms in the typical geothermal field environment and its significance for geothermal exploration |
ZHENG Xu-Ying1( ), XU Ke-Wei1( ), GU Lei1, WANG Guo-Jian1, LI Guang-Zhi1, GUO Jia-Qi1, ZOU Yu1, BORJIGIN Tenger2 |
1. Wuxi Research Institute of Petroleum Geology, SINOPEC, Wuxi 214126, China 2. Oil & Gas Resources Survey, China Geological Survey, Beijing 100083, China |
|
|
Abstract As a kind of clean energy, geothermal energy has attracted the attention of scholars all over the world in recent years. Previous geochemical exploration methods for geothermal resources are limited to the analysis of individual geochemical indices. Moreover, previous studies of microorganisms in geothermal fields mostly focus on hot spring outcrops, lacking ecological studies of geothermal resources in complex terrains. This study investigated the soil geochemistry and microbial diversity of the Bantang Hot Spring geothermal field in Chaohu, Anhui Province. Geochemical indices such as head-space gas, soil gas, acid-hydrolyzed hydrocarbons, and altered carbonate were detected in this study. Combined with the microbial high-throughput sequencing technology, this study analyzed the composition and spatial-temporal distribution of the microbial population above the geothermal fields in uplifted mountains and the relationship between these bioinformatics characteristics and the geochemical indices. The results indicate that the acid-hydrolyzed hydrocarbons on the surface of the geothermal field showed a maximum methane concentration of 43.7 μL/kg in the area between faults F2 and F3, adequately reflecting the fault location of the geothermal field.Bacillaceae, Hydrogenophilaceae, and Thermodesulfovibrionaceae in the geothermal field and the background area showed large relative abundance differences, which were 0.178%, 0.108%, and 0.060%, respectively. This result indicates that they are sensitive to geothermal resources and correspond well to geochemical indices above the known geothermal field. This study preliminarily investigated the diversity of geothermal microorganisms in the geothermal field and analyzed the corresponding relationships between microbial distribution characteristics and geochemical indexes, providing technical support for the microbiological exploration of geothermal resources.
|
Received: 30 March 2022
Published: 27 October 2023
|
|
Corresponding Authors:
XU Ke-Wei
E-mail: zhengxuying.syky@sinopec.com;xukw.syky@sinopec.com
|
|
|
|
|
Geological and geochemical exploration profile of Bantang geothermal field
|
|
Abnormal characteristics of geochemical indices over A-A’profile in Bantang hot spring
|
|
Microbial community map of different sources (Phylum level)
|
|
Microbial community map of different sources (Class level)
|
|
Beta diversity analysis of microbial community of soil samples from different sources
|
排名 | 菌种名称 | 地热田上方 丰度均值/% | 背景区丰 度均值/% | 差值/% | 1 | 芽孢杆菌科(Bacillaceae) | 0.210353789 | 0.032049 | 0.178305 | 2 | 嗜氢菌科(Hydrogenophilaceae) | 0.110271807 | 0.002218 | 0.108054 | 3 | 热脱硫弧菌科(Thermodesulfovibrionaceae) | 0.060291076 | 0.002938 | 0.057353 | 4 | 消化链球菌科(Peptostreptococcaceae) | 0.041819903 | 0.000529 | 0.041291 | 5 | 梭菌科(Clostridiaceae) | 0.042082563 | 0.002736 | 0.039347 | 6 | 动球菌科(Planococcaceae) | 0.02255116 | 0.001332 | 0.021219 | 7 | 地杆菌科(Geobacteraceae) | 0.01878669 | 0.005147 | 0.01364 | 8 | 类芽孢杆菌科(Paenibacillaceae) | 0.027219813 | 0.017902 | 0.009318 | 9 | 黄单胞菌科(Xanthomonadaceae) | 0.015909608 | 0.007594 | 0.008316 | 10 | 脱硫叶菌科(Desulfobulbaceae) | 0.005723484 | 0.001101 | 0.004622 |
|
A list of microbial relative abundances of Bantang geothermal field
|
|
Distribution of relative abundances of microorganisms in geothermal indication of Bantang geothermal field
|
[1] |
吴继新. 地热勘查中各种技术方法的综合应用[J]. 地下水, 2013, 35(3):105-109.
|
[1] |
Wu J X. Comprehensive application of various techniques and methods in geothermal exploration[J]. Ground Water, 2013, 35(3):105-109.
|
[2] |
许军强, 白朝军. 我国地热资源勘探技术及其应用[C]// 河南地球科学通报2009年卷(下册), 2009:216-220.
|
[2] |
Xu J Q, Bai C J. Technique and application of geothermal resources exploration in China[C]// Henan Earth Science Bulletin 2009 volume(Part I) 2009:216-220.
|
[3] |
Sasaki K, Ueda A, Zhang J, et al. Geochemical study of hot springs associated with new geothermal exploration in the eastern part of Toyama Prefecture,Japan[J]. Procedia Earth and Planetary Science, 2013, 7:766-769.
|
[4] |
Barberi F, Carapezza M L, Cioni R, et al. New geochemical investigations in Platanares and Azacualpa geothermal sites (Honduras)[J]. Journal of Volcanology and Geothermal Research, 2013, 257:113-134.
|
[5] |
McDonald I R, Murrell J C. The particulate methane monooxygenase gene pmoA and its use as a functional gene probe for methanotrophs[J]. FEMS Microbiology Letters, 1997, 156(2):205-210.
|
[6] |
Rasheed M A, Hasan S Z, Rao P, et al. Application of geo-microbial prospecting method for finding oil and gas reservoirs[J]. Research Article, 2015, 9(1):40-50.
|
[7] |
张春林, 庞雄奇, 梅海. 烃类微渗漏与宏渗漏的识别及镇巴长岭—龙王沟地区勘探实践[J]. 天然气地球科学, 2009, 20(5):794-800.
|
[7] |
Zhang C L, Pang X Q, Mei H. Identification of microseepage from macroseepage and exploration practice in Changling-Longwanggou area of Zhenba block[J]. Natural Gas Geoscience, 2009, 20(5):794-800.
|
[8] |
Zhang Y, Deng C P, Shen B, et al. Syntrophic interactions within a butane-oxidizing bacterial consortium isolated from Puguang gas field in China[J]. Microb.Ecol. 2016, 72:538-548.
|
[9] |
王万春, 刘文汇, 王国仓, 等. 沉积有机质微生物降解与生物气源岩识别——以柴达木盆地三湖坳陷第四系为例[J]. 石油学报, 2016, 37(3):318-327.
|
[9] |
Wang W C, Liu W H, Wang G C, et al. Biodegradation of depositional organic matter and identification of bio-genic gas source rocks:An example from the Sanhu depression of Qaidam Basin[J]. Acta Petrolei Sinica, 2016, 37(3) :318-327.
|
[10] |
丁力, 杨迪生, 吴宇兵. 微生物地球化学勘探技术在准噶尔盆地的应用[J]. 天然气工业, 2021, 41(10):50-57.
|
[10] |
Ding L, Yang D S, Wu Y B. Application of microbial geochemical exploration technologies in the Junggar Basin[J]. Natural Gas Industry, 2021, 41(10):50-57.
|
[11] |
Li X X, Mbadinga S M, Liu J F. Microbiota and their affiliation with physiochemical characteristics of different subsurface petroleum reservoirs[J]. International Biodeterioration & Biodegradation, 2017, 120:170-185.
|
[12] |
闫亮, 贾宝迁, 季苗, 等. 塔里木盆地新和地区低幅度构造油气微生物特征及有利目标区预测[J]. 石油实验地质, 2020, 42(6):1001-1008.
|
[12] |
Yan L, Jia B Q, Ji M, et al. Microbial characteristics of low-amplitude structures and prediction of favorable target areas in Xinhe area,Tarim Basin,[J]. Petroleum Geology & Experiment, 2020, 42(6):1001-1008.
|
[13] |
Lundberg D, Derek S, Mieczkowski P. Practical innovations for high-throughput amplicon sequencing[J]. Nature Methods, 2013, 10:999-1002.
|
[14] |
Mohammed R, Lakshmi M, Kalpana M. The microbial activity in development of hydrocarbon microseepage:An indicator for oil and gas exploration[J]. Geosciences Journal, 2013, 17(3):329-338.
|
[15] |
何晴, 王尚, 邓晔. 分子生物学技术在热泉地质微生物学研究中的应用[J]. 微生物学报, 2019, 59(6):996-1011.
|
[15] |
He Q, Wang S, Deng Y. Molecular biological technologies applied in geo-microbiology of terrestrial geothermal environments[J]. Acta Microbiologica Sinica, 2019, 59(6):996-1011.
|
[16] |
Shekhar S K, Godheja J, Modi D R. Molecular technologies for assessment of bioremediation and characterization of microbial communities at pollutant-contaminated sites[G]//Bioremediation of Industrial Waste for Environmental Safety, Singapore:Springer, 2020, 18:437-474.
|
[17] |
Ekaterina A, Trine F, Knut R. De novo semi-alignment of 16S rRNA gene sequences for deep phylogenetic characterization of next generation sequencing data[J]. Microbes Environ, 2013, 28(2):211-216.
|
[18] |
Linhares D D C, Saia F T, Duarte R T D, et al. Methanotrophic community detected by DNA-SIP at Bertioga's mangrove area,Southeast Brazil[J]. Microbial Ecology, 2021, 81:954-964.
|
[19] |
Ning Z, He Z, Zhang S, et al. Development of a prmA genes quantification technique and assessment of the technique's application potential for oil and gas reservoir exploration[J]. Energy Exploration & Exploitation, 2018, 36(5):1172-1188.
|
[20] |
李清彩, 赵庆令, 安茂国, 等. 电感耦合等离子体发射光谱法测定地热水中的硫化物[J]. 岩矿测试, 2017, 36(3):239-245.
|
[20] |
Li Q C, Zhao Q L, An M G, et al. Determination of sulfide in geothermal water by inductively coupled plasma-optical emission spectrometry[J]. Rock and Mineral Analysis, 2017, 36(3) :239-245.
|
[21] |
张生, 陈根文, Seward T M. 离子选择电极法测定水热气体中的硼含量及硼的气态迁移能力研究[J]. 岩矿测试, 2016, 35(4):358-365.
|
[21] |
Zhang S, Chen G W, Seward T M. Determination of boron content in hydrothermal vapor by ion selective electrode method:Insights into the gaseous transport of boron[J]. Rock and Mineral Analysis, 2016, 35(4) :358-365.
|
[22] |
王祝, 李明礼, 邵蓓, 等. 电感耦合等离子体发射光谱法测定西藏日多温泉地热水中11种主次量元素[J]. 岩矿测试, 2015, 34(3):302-307.
|
[22] |
Wang Z, Li M L, Shao B, et al. Determination of 11 major and minor elements in geothermal water of the riduo hotsprings from tibet by inductively coupled plasma-optical emission spectrometry[J]. Rock and Mineral Analysis, 2015, 34(3):302-307.
|
[23] |
姜贞贞, 刘高令, 王祝, 等. 电感耦合等离子体质谱法测定高海拔地区地热水中的微量元素[J]. 岩矿测试, 2016, 35(5):475-480.
|
[23] |
Jiang Z Z, Liu G L, Wang Z, et al. Determination of trace elements in thermomineral waters of a high altitude area by inductively coupled plasma-mass spectrometry[J]. Rock and Mineral Analysis, 2016, 35(5) :475-480.
|
[24] |
黄家福, 潘裕添, 陈俊玉. 地热田碱性蛋白酶菌株的选育与酶性质的研究[J]. 漳州师范学院学报:自然科学版. 2011, 71:48-55.
|
[24] |
Huang J F, Pan Y T, Chen J Y. Breeding of alkaline protease producing strain from geothermal field and properties of the enzyme[J]. Journal of Zhangzhou Teachers College:Natural Sciences, 2011, 71:48-55.
|
[25] |
Sagasti A J, Massini J L G, Escapa I H, et al. Multitrophic interactions in a geothermal setting:Arthropod borings,actinomycetes,fungi and fungal-like microorganisms in a decomposing conifer wood from the Jurassic of Patagonia[J]. Palaeogeography,Palaeoclimatology,Palaeoecology, 2019, 5(14):31-44.
|
[26] |
孙雄, 柏林, 查世新, 等. 中国温泉之乡巢湖市的地热资源及其开发利用[J]. 上海地质, 2010, 31(S1):258-261.
|
[26] |
Sun X, Bai L, Zha S X, et al. Geothermal resource and its development and utilization in Chaohu City,Hot Spring Land in China[J]. Shanghai Geology, 2010, 31(S1):258-261.
|
[27] |
于鹏, 宋传中. 巢湖地区构造应力场研究及动力分析[J]. 合肥学院学报:自然科学版, 2010, 20(2):78-81.
|
[27] |
Yu P, Song C Z. Study on the tectonic stress field and dynamic analysis of Chaohu area[J]. Journal of Hefei University:Natural Sciences, 2010, 20(2):78-81.
|
[28] |
张恩立, 张寅生, 郑树杰, 等. 郯庐断裂带皖东段与滁河断裂构造及地震活动相关性研究[J]. 防灾减灾工程学报, 2004, 24(2):202-209.
|
[28] |
Zhang E L, Zhang Y S, Zheng S J, et al. Correlation of tectonics and seismicity in Tancheng-Lujiang fault zone in east Anhui and Chuhe fault[J]. Journal of Disaster Prevention and Mitigation Engineering, 2004, 24(2):202-209.
|
[29] |
宁金野. 合肥温泉之乡半汤地热成因模式及其外围地热前景探讨[J]. 安徽地质, 2013, 23(3):227-230.
|
[29] |
Ning J Y. Genetic model of the geothermal energy in Bantang,a spa town in Hefei and the exploration potential in the periphery[J]. Geology of Anhui, 2013, 23(3):227-230.
|
[30] |
陈学锋, 丁海亮, 李莉莉, 等. 安徽昭关温泉形成条件及地热水化学特征分析[J]. 地下水, 2017, 39(5):51-53.
|
[30] |
Chen X F, Ding H L, Li L L, et al. Formation conditions and chemical characteristics of geothermal water in Zhaoguan,Anhui Province[J]. Ground Water, 2017, 39(5):51-53.
|
[31] |
顾磊, 许科伟, 汤玉平, 等. 基于高通量测序技术研究玉北油田上方微生物多样性[J]. 应用与环境生物学报, 2017, 23(2):276-282.
|
[31] |
Gu L, Xu K W, Tang Y P, et al. Microbial diversity in Yubei Oil field determined by high-throughput sequencing[J]. Chinese Journal of Applied & Environmental Biology, 2017, 23(2) :276-282.
|
[32] |
顾磊, 许科伟, 汤玉平, 等. 基于高通量测序技术研究页岩气区上方微生物多样性[J]. 石油实验地质, 2020, 42(3):443-458.
|
[32] |
Gu L, Xu K W, Tang Y P, et al. Microbial diversity above a shale gas field using high-throughput sequencing[J]. Petroleum Geology & Experiment, 2020, 42(3):443-458.
|
[33] |
陈卫明, 肖细炼, 李庆霞, 等. 气相色谱法测定油气化探样品中酸解烃的研究[J]. 岩矿测试, 2015, 34(6):698-703.
|
[33] |
Chen W M, Xiao X L, Li Q X, et al. Determination of acidolysis hydrocarbons in oil/gas geochemical exploration samples by gas chromatography[J]. Rock and Mineral Analysis, 2015, 34(6):698-703.
|
[34] |
吴向华. 顶空气分析技术在井中化探中的应用研究[J]. 安徽地质, 2002, 12(2):140-144.
|
[34] |
Wu X H. Top gas analysis technique applied to well geochemical exploration[J]. Geology of Anhui, 2002, 12(2):140-144.
|
[35] |
向龙斌, 杨占山, 吴朋远, 等. 地表土壤碳酸盐热解与碳同位素实验研究[J]. 石油实验地质, 1993(3):304-308.
|
[35] |
Xiang L B, Yang Z S, Wu P Y, et al. Pyrolysis and c-isotopic study on carbonates of surface soil[J]. Petroleum Geology & Experiment, 1993 (3):304-308.
|
[36] |
把立强, 李广友. 模拟气碳同位素在线分析技术[J]. 石油实验地质. 2003, 25 (S1):607-609.
|
[36] |
Ba L Q, Li G Y. On-line analytical technology of carbon isotopes for simulated gases[J]. Petroleum Geology & Experiment, 2003, 25(S1):607-609.
|
[37] |
成智慧, 郭正府, 张茂亮, 等. 腾冲新生代火山区温泉CO2气体排放通量研究[J]. 岩石学报. 2012, 28(4):1217-1224.
|
[37] |
Cheng Z H, Guo Z F, Zhang M L, et al. CO2 flux estimations of hot springs in the Tengchong Cenozoic volcanic field,Yunnan Province,SW China[J]. Acta Petrologica Sinica, 2012, 28(4):1217-1224.
|
[38] |
董海良, 于炳松, 吕国. 地质微生物学中几项最新研究进展[J]. 地质评论, 2009, 55(4):552-580.
|
[38] |
Dong H L, Yu B S, Lyu G. Recent developments in geomicrobiology[J]. Geological Review, 2009, 55(4):552-580.
|
[39] |
Guo L, Wang G C, Sheng Y Z, et al. Temperature governs the distribution of hot spring microbial community in three hydrothermal fields,Eastern Tibetan Plateau Geothermal Belt,Western China[J]. Science of The Total Environment, 2020, 720:137574.
|
[1] |
SONG Wei-Fang, LIU Jian-Zhong, WU Pan, LI Jun-Hai, WANG Ze-Peng, YANG Cheng-Fu, TAN Qin-Ping, WANG Da-Fu. A successful application of the tectono-geochemistry weak information extraction method in the prospecting of Carlin-type gold deposits in southwestern Guizhou Province[J]. Geophysical and Geochemical Exploration, 2022, 46(6): 1338-1348. |
[2] |
LIU Kai, DAI Hui-Min, LIU Guo-Dong, SONG Yun-Hong, LIANG Shuai, YANG Ze. Geochemical classification of the soil in a typical black soil area using the principal component analysis combined with K-means clustering algorithm[J]. Geophysical and Geochemical Exploration, 2022, 46(5): 1132-1140. |
|
|
|
|