|
|
A study on the influence of side anomalies in resistivity-based advance detection based on an unstructured finite element method |
CHEN Hai-Wen1( ), YE Yi-Xin2( ), YANG Shuo-Jian1, QIN Jin-Sheng1 |
1. School of Geophysics and Measurement-control Technology,East China University of Technology,Nanchang 330013,China 2. School of Resources and Geosciences,China University of Mining and Technology,Xuzhou 221116,China |
|
|
Abstract To further explore the influence patterns of side anomalies in resistivity-based advance detection for roadways and to improve the detection accuracy,this study conducted three-dimensional forward modeling using an adaptive unstructured finite element method based on dual weighted posteriori error estimation.First,this study verified the applicability and accuracy of this method in the simulation of advanced detection using an infinite vertical plate model.Then,it established a model without considering side anomalies to simulate the advance detection response in roadways.Then,it conducted numerical simulations of high- and low-resistivity side anomalies' directions,the distances from side anomalies to roadways and mining faces,roadway sizes,power supply and reception ways,and the influence of side anomalies on advance detection in multi-layer media.Finally,this study analyzed the morphological characteristics of apparent resistivity anomaly curves.The results are as follows:(1)The actual positions of anomalies in front of roadways can be inferred from the extreme values of anomaly curves;(2)The responses of high- and low-resistivity side anomalies generally do not mask the response characteristics of anomalies in front of roadways.However,they can distort the anomaly curves in the corresponding range by making them convex or concave,with the distortion positions consistent with the actual positions of anomalies;(3)The presence of roadway cavities enhances the responses of anomalies on roadway floors.Although different roadway sizes impose different effects on anomalies on roadway rooves,they do not affect the responses of anomalies in front of roadways in general;(4)In multi-layer strata,anomaly response curves can still reflect the actual positions of side anomalies.Whether the response characteristics of anomalies in front of roadways are masked depends on the resistivity of each layer;(5)The identification of interference anomalies requires further research in combination with actual conditions.
|
Received: 15 September 2022
Published: 11 October 2023
|
|
|
|
|
|
Schematic diagram of the advance detection principle
|
|
Schematic diagram of the underground infinite plate body model profile
|
|
Local unstructured mesh profiles
|
|
Comparison of the numerical and analytical solutions of the apparent resistivity
|
|
Grid section of the local tunnel
|
|
Side anomalous body model with tunnel
|
|
Abnormal curves of distances d change
|
|
Abnormal curves of anomalous bodies ρ change
|
|
Fitting curves of the relationship between extreme position and actual position
|
|
Abnormal curves of side anomalous bodies in different directions
|
|
Abnormal response curves of upper and lower sides without tunnel
|
|
Side abnormal curves at different distances from the tunnel
|
|
Side abnormal curves at different distances from the tunnel face
|
|
Floor abnormal curves of different tunnel sizes
|
|
Roof abnormal curves of different tunnel sizes
|
|
Schematic diagram of power supply and reception in different ways
|
|
Side abnormal curves of power supply and reception in different ways
|
|
Schematic diagram of three-layered strata
|
参数项 | 模型编号 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | | ρ1 | 200 | 100 | 300 | 200 | 200 | 200 | 200 | 100 | 300 | ρ2 | 200 | 200 | 200 | 100 | 300 | 200 | 200 | 200 | 200 | ρ3 | 200 | 200 | 200 | 200 | 200 | 100 | 300 | 300 | 100 |
|
Resistivity parameters of the three-layered layered modelΩ·m
|
|
Abnormal curves of different media resistivity
|
|
Abnormal curves of different h2 thicknesses
|
[1] |
程久龙, 王玉和, 于师建, 等. 巷道掘进中电阻率法超前探测原理与应用[J]. 煤田地质与勘探, 2000, 28(4):60-62.
|
[1] |
Cheng J L, Wang Y H, Yu S J, et al. The principle and application of advance surveying in roadway excavation by resistivity method[J]. Coal Geology & Exploration, 2000, 28(4):60-62.
|
[2] |
黄俊革, 王家林, 阮百尧. 坑道直流电阻率法超前探测研究[J]. 地球物理学报, 2006, 49(5):1529-1538.
|
[2] |
Huang J G, Wang J L, Ruan B Y. A study on advanced detection using DC resistivity method in tunnel[J]. Chinese Journal of Geophysics, 2006, 49(5):1529-1538.
|
[3] |
阮百尧, 邓小康, 刘海飞, 等. 坑道直流电阻率超前聚焦探测新方法研究[J]. 地球物理学报, 2009, 52(1):289-296.
|
[3] |
Ruan B Y, Deng X K, Liu H F, et al. Research on a new method of advanced focus detection with DC resistivity in tunnel[J]. Chinese Journal of Geophysics, 2009, 52(1):289-296.
|
[4] |
刘志民, 李冰, 潘越, 等. 坑道直流聚焦多点电源探测聚焦与偏转效应研究[J]. 煤炭科学技术, 2021, 49(11):174-179.
|
[4] |
Liu Z M, Li B, Pan Y, et al. Research on focusing and deflection effect of detection with DC focusing multipoint current sources in tunnel[J]. Coal Science and Technology, 2021, 49(11):174-179.
|
[5] |
王敏, 刘玉, 牟义, 等. 多装置矿井直流电法巷道超前探测研究及应用[J]. 煤炭学报, 2021, 46(S1):396-405.
|
[5] |
Wang M, Liu Y, Mu Y, et al. Research and application of multi array mine DC electrical method for roadway advanced detection[J]. Journal of China Coal Society, 2021, 46(S1):396-405.
|
[6] |
张淼淼, 石显新. 巷道渐进式排列超前探测正演模拟[J]. 煤炭技术, 2022, 41(4):71-74.
|
[6] |
Zhang M M, Shi X X. Forward simulation of progressive arrangement advance detection in roadway[J]. Coal Technology, 2022, 41(4):71-74.
|
[7] |
王鹏, 鲁晶津, 王信文. 再论巷道直流电法超前探测技术的有效性[J]. 煤炭科学技术, 2020, 48(12):257-263.
|
[7] |
Wang P, Lu J J, Wang X W. Restudy on effectivty of direct current advance detection method in roadway[J]. Coal Science and Technology, 2020, 48(12):257-263.
|
[8] |
李飞, 张永超, 连会青, 等. 掘进工作面直流电法超前探测技术问题探讨[J]. 煤炭科学技术, 2020, 48(12):250-256.
|
[8] |
Li F, Zhang Y C, Lian H Q, et al. Discussion on problems of direct current advance detection method in roadway driving face[J]. Coal Science and Technology, 2020, 48(12):250-256.
|
[9] |
韩德品, 李丹, 程久龙, 等. 超前探测灾害性含导水地质构造的直流电法[J]. 煤炭学报, 2010, 35(4):635-639.
|
[9] |
Han D P, Li D, Cheng J L, et al. DC method of advanced detecting disastrous water-conducting or water-bearing geological structures along same layer[J]. Journal of China Coal Society, 2010, 35(4):635-639.
|
[10] |
王恩营, 李锐, 刘仰光, 等. 井下直流电法超前探测低阻区水与瓦斯视电阻率响应分析[J]. 煤矿安全, 2018, 49(3):168-171.
|
[10] |
Wang E Y, Li R, Liu Y G, et al. Analysis of apparent resistivity response on water and gas in low resistivity zone by underground DC advance method[J]. Safety in Coal Mines, 2018, 49(3):168-171.
|
[11] |
胡雄武, 张平松. 坑道隐伏陷落柱直流电阻率法超前探测分析[J]. 地球物理学进展, 2019, 34(3):1176-1183.
|
[11] |
Hu X W, Zhang P S. Analysis of hidden collapse column ahead of tunneling face detected by DC resistivity method[J]. Progress in Geophysics, 34(3):1176-1183.
|
[12] |
韩德品, 石学锋, 石显新, 等. 煤矿老窑积水巷道直流电法超前探测异常特征研究[J]. 煤炭科学技术, 2019, 47(4):157-161.
|
[12] |
Han D P, Shi X F, Shi X X, et al. Study on anomaly characteristics of in-advance DC electric detection of water-accumulated roadway in abandoned coal mines[J]. Coal Science and Technology, 2019, 47(4):157-161.
|
[13] |
岳建华, 李志聃. 矿井直流电法勘探中的巷道影响[J]. 煤炭学报, 1999, 24(1):9-12.
|
[13] |
Yue J H, Li Z D. Roadway influence on electrical prospecting in underground mine[J]. Journal of China Coal Society, 1999, 24(1):9-12.
|
[14] |
马炳镇, 李貅. 矿井直流电法超前探中巷道影响的数值模拟[J]. 煤田地质与勘探, 2013, 41(1):78-81.
|
[14] |
Ma B Z, Li X. Roadway influences on advanced DC detection in underground mine[J]. Coal Geology & Exploration, 2013, 41(1):78-81.
|
[15] |
翟培合, 刘玉, 牛超, 等. 起伏巷道直流电阻率法超前探测数值模拟[J]. 煤矿安全, 2014, 45(2):138-140,144.
|
[15] |
Zhai P H, Liu Y, Niu C, et al. Numerical simulation of advanced detection with DC resistivity in fluctuation tunnel[J]. Safety in Coal Mines, 2014, 45(2):138-140,144.
|
[16] |
翟培合, 任科科, 张钊, 等. 基于比较法消除巷道影响的三维电法超前探测技术[J]. 煤矿安全, 2021, 52(7):67-71,78.
|
[16] |
Zhai P H, Ren K K, Zhang Z, et al. Three-dimensional electrical method advanced detection technology based on comparative method to eliminate the influence of roadway[J]. Safety in Coal Mines, 2021, 52(7):67-71,78.
|
[17] |
占文锋, 武玉梁, 李文. 矿井直流电法全空间电场分布数值模拟及影响因素[J]. 煤田地质与勘探, 2018, 46(1):139-147.
|
[17] |
Zhan W F, Wu Y L, Li W. Simulation and analysis of electric field distribution and its influence factors in coal mine direct current method[J]. Coal Geology & Exploration, 2018, 46(1):139-147.
|
[18] |
石学锋. 层状空间矿井直流电法超前探测曲线特征研究[J]. 煤炭技术, 2019, 38(2):68-70.
|
[18] |
Shi X F. Research on characteristics of advance DC electric detection curve of mine in layered space[J]. Coal Technology, 2019, 38(2):68-70.
|
[19] |
阮百尧, 邓小康, 刘海飞, 等. 坑道直流电阻率超前聚焦探测的影响因素及最佳观测方式[J]. 地球物理学进展, 2010, 25(4):1380-1386.
|
[19] |
Ruan B Y, Deng X K, Liu H F, et al. Influential factors and optimum survey method of advanced focus detection with DC resistivity in tunnels[J]. Progress in Geophysics, 2010, 25(4):1380-1386.
|
[20] |
柳建新, 邓小康, 郭荣文, 等. 坑道直流聚焦超前探测电阻率法有限元数值模拟[J]. 中国有色金属学报, 2012, 22(3):970-975.
|
[20] |
Liu J X, Deng X K, Guo R W, et al. Numerical simulation of advanced detection with DC focus resistivity in tunnel by finite element method[J]. The Chinese Journal of Nonferrous Metals, 2012, 22(3):970-975.
|
[21] |
鲁晶津, 吴小平. 巷道直流电阻率法超前探测三维数值模拟[J]. 煤田地质与勘探, 2013, 41(6):83-86.
|
[21] |
Lu J J, Wu X P. 3D numerical modeling of tunnel DC resistivity for in-advance detection[J]. Coal Geology & Exploration, 2013, 41(6):83-86.
|
[22] |
石学锋. 矿井直流电法超前探测影响因素数值模拟[J]. 煤炭技术, 2016, 35(11):122-124.
|
[22] |
Shi X F. Numerical simulation of influencing factors in advance DC electric detection in coal mines[J]. Coal Technology, 2016, 35(11):122-124.
|
[23] |
张卫, 邱占林. 坑道超前探测技术方法研究及趋势[J]. 煤炭技术, 2021, 40(7):68-70.
|
[23] |
Zhang W, Qiu Z L. Research and development of advanced tunnel detection technology[J]. Coal Technology, 2021, 40(7):68-70.
|
[24] |
严波, 刘颖, 叶益信. 基于对偶加权后验误差估计的2.5维直流电阻率自适应有限元正演[J]. 物探与化探, 2014, 38(1):145-150.
|
[24] |
Yan B, Liu Y, Ye Y X. 2.5D direct current resistivity adaptive finite-element numerical modeling based on dual weighted posteriori error estimation[J]. Geophysical and Geochemical Exploration, 2014, 38(1):145-150.
|
[25] |
Ye Y X, Hu X Y, Xu D. A goal-oriented adaptive finite element method for 3D resistivity modeling using dual-error weighting approach[J]. Journal of Earth Science, 2015, 26(6):821-826.
|
[1] |
ZHOU Zhong-Hang, ZHANG Ying-Ying. Correction of the influence of mountains on grounded-source transient electromagnetic responses[J]. Geophysical and Geochemical Exploration, 2023, 47(5): 1236-1249. |
[2] |
ZHANG Fan, FENG Guo-Rui, QI Ting-Ye, YU Chuan-Tao, ZHANG Xin-Jun, WANG Chao-Yu, DU Sun-Wen, ZHAO De-Kang. Feasibility of the transient electromagnetic method in the exploration of double-layer waterlogged goafs with different layer spacings in coal mines[J]. Geophysical and Geochemical Exploration, 2023, 47(5): 1215-1225. |
|
|
|
|