|
|
Simultaneous determination of 12 elements in biological samples using microwave digestion and inductively coupled plasma-optical emission spectrometry |
XIAO Xi-Lian1,2( ), LIU Jie3( ), WEI Li1, CHEN Yan-Bo1, YANG Xiao-Li1,2, YANG Hong-Mei1,2 |
1. Wuhan Geological Survey Center, China Geological Survey (Central South China Innovation Center for Geosciences), Wuhan 430205, China 2. Research Center for Petrogenesis and Mineralization of Granitoid Rocks, China Geological Survey, Wuhan 430205, China 3. Changsha General Survey of Natural Resources Center, China Geological Survey, Changsha 410699, China |
|
|
Abstract Given the particularity of biological samples, this study employed microwave digestion and inductively coupled plasma-optical emission spectrometry (ICP-OES) for the simultaneous determination of 12 elements in biological samples, including aluminum (Al), ferrum (Fe), magnesium (Mg), calcium (Ca), sodium (Na), potassium (K), manganese (Mn), phosphorus (P), titanium (Ti), barium (Ba), strontium (Sr), and zinc (Zn). By optimizing the pretreatment conditions of microwave digestion samples, this study selected the mixed reagent of reverse aqua regia (10 mL) and hydrogen peroxide (1 mL) as the digestion reagent, and an appropriate experimental procedure for the microwave digestion system to ensure complete decomposition of samples. Moreover, this study selected the optimal plasma excitation conditions, analytical spectral lines of elements, and background subtraction position to ensure high determination sensitivity of elements and interference-free spectral lines. This study plotted the calibration curve with the national primary reference materials for biological components as the calibration series, making the calibration series consistent with the sample matrix as much as possible. The simultaneous determination method had a total dilution multiple of 100, eliminating the interference of the matrix effect. The results show that this method had a detection limit of (0.04~4.93)×10-6 and a relative standard deviation (RSD) of 1.41%~5.13%, showing high precision. As verified by the national primary reference materials, this method had a relative error (RE) within ±10% and determined values consistent with standard values. Therefore, this method is accurate and reliable, meeting the analysis requirements of biological samples.
|
Received: 16 June 2022
Published: 05 July 2023
|
|
|
|
|
元素 | 分析线波长/nm | 谱线级次 | 扣背景位置 | Al | 167.079 | 502 | 左、右 | Fe | 259.940 | 130 | 左、右 | Mg | 279.553 | 121 | 左、右 | Ca | 393.366 | 86 | 左、右 | Na | 588.995 | 57 | 左、右 | K | 766.490 | 44 | 左、右 | Mn | 257.610 | 131 | 左、右 | P | 177.495 | 490 | 左、右 | Ti | 334.941 | 101 | 左、右 | Ba | 455.403 | 74 | 左、右 | Sr | 407.771 | 83 | 左、右 | Zn | 213.856 | 458 | 左、右 |
|
Analysis spectral lines of each element
|
步骤 | 升温速率/ (℃·min-1) | 温度/℃ | 保温时 间/min | 压力/ atm | 发射功 率/W | 1 | 15 | 100 | 15 | 20 | 1500 | 2 | 10 | 140 | 25 | 30 | 1500 | 3 | 5 | 180 | 10 | 40 | 1500 |
|
Experimental procedure of microwave digester
|
元素 | 标准物质含量/10-6 | 校准曲线方程 | 线性相关系数r | GBW10014 | GBW10023 | GBW07604 | GBW07602 | Al | 166 | 4900 | 1040 | 2140 | y=34.19x+5.49 | 0.9997 | Fe | 98 | 1450 | 274 | 1020 | y=419.96x+0.81 | 0.9998 | Mg | 2410 | 4000 | 6500 | 2870 | y=439.13x+153.11 | 0.9996 | Ca | 700 | 1530 | 18100 | 22200 | y=41846.75x+1526.05 | 0.9997 | Na | 10900 | 15500 | 200 | 11000 | y=1900.91x+3174.82 | 0.9998 | K | 15500 | 33600 | 13800 | 8500 | y=342.86x-11.92 | 0.9997 | Mn | 18.7 | 68.0 | 45.0 | 58.0 | y=65343.68x+16.20 | 0.9999 | P | 4600 | 5850 | 1680 | 830 | y=182.06x+1.42 | 0.9998 | Ti | 9.0 | 92.0 | 20.4 | 95.0 | y=1605.31x+0.51 | 0.9995 | Ba | 12.0 | 10.4 | 26.0 | 19.0 | y=28015.95x+122.45 | 0.9997 | Sr | 48 | 24 | 154 | 345 | y=38969.35x+0.57 | 1.0000 | Zn | 26.0 | 28.0 | 37.0 | 20.6 | y=14972.49x+39.51 | 0.9997 |
|
Contents of elements in reference materials and calibration curve equation
|
元素 | GBW07603 | GBW07605 | GBW10015 | GBW10020 | 检出限/ 10-6 | /10-6 | RSD/% | /10-6 | RSD/% | /10-6 | RSD/% | /10-6 | RSD/% | Al | 2024 | 4.05 | 3026 | 4.69 | 620.67 | 2.10 | 1143 | 3.62 | 4.93 | Fe | 1047 | 5.13 | 261.39 | 2.60 | 542.42 | 2.39 | 463.50 | 4.20 | 4.26 | Mg | 4790 | 2.44 | 1734 | 3.52 | 5513 | 2.67 | 2322 | 2.80 | 2.48 | Ca | 16823 | 2.24 | 4248 | 2.48 | 6626 | 2.46 | 42073 | 1.41 | 1.25 | Na | 19605 | 1.77 | 44.02 | 4.24 | 15330 | 2.63 | 128.03 | 3.70 | 1.69 | K | 9252 | 2.29 | 16557 | 2.40 | 24666 | 2.46 | 7617 | 2.50 | 3.55 | Mn | 61.58 | 4.54 | 1252 | 3.50 | 42.70 | 3.99 | 30.12 | 4.25 | 0.14 | P | 1027 | 4.80 | 2817 | 3.44 | 3521 | 3.20 | 1261 | 4.69 | 1.02 | Ti | 94.67 | 3.14 | 24.76 | 4.29 | 29.77 | 2.91 | 39.03 | 3.45 | 0.37 | Ba | 19.37 | 5.07 | 57.65 | 2.64 | 8.91 | 3.51 | 99.65 | 2.53 | 0.11 | Sr | 243.77 | 2.16 | 15.19 | 3.56 | 87.39 | 3.07 | 169.14 | 2.84 | 0.08 | Zn | 54.73 | 3.94 | 26.59 | 4.34 | 34.73 | 2.44 | 18.82 | 3.40 | 0.04 |
|
Precision tests and detection limit of the method
|
元素 | 项目 | GBW07603 | GBW07605 | GBW10015 | GBW10020 | GBW10047 | GBW10049 | Al | 认定值/10-6 | 2000 | 3000 | 610 | 1150 | 460 | 3000 | 平均值/10-6 | 2105 | 3115 | 614.55 | 1179 | 456.85 | 3125 | RE/% | 5.25 | 3.83 | 0.75 | 2.52 | -0.68 | 4.17 | Fe | 认定值/10-6 | 1070 | 264 | 540 | 480 | 148 | 1010 | 平均值/10-6 | 1054 | 265.99 | 548.57 | 473.69 | 145.69 | 1076 | RE/% | -1.50 | 0.75 | 1.59 | -1.31 | -1.56 | 6.53 | Mg | 认定值/10-6 | 4800 | 1700 | 5520 | 2340 | 910 | 2700 | 平均值/10-6 | 4769 | 1678 | 5565 | 2285 | 904.25 | 2645 | RE/% | -0.65 | -1.29 | 0.82 | -2.35 | -0.63 | -2.04 | Ca | 认定值/10-6 | 16800 | 4300 | 6600 | 42000 | 2550 | 22800 | 平均值/10-6 | 17012 | 4218 | 6575 | 41695 | 2538 | 22514 | RE/% | 1.26 | -1.91 | -0.38 | -0.73 | -0.47 | -1.25 | Na | 认定值/10-6 | 19600 | 44 | 15000 | 130 | 6500 | 300 | 平均值/10-6 | 19328 | 43.66 | 14892 | 128.54 | 6472 | 281.65 | RE/% | -1.39 | -0.77 | -0.72 | -1.12 | -0.43 | -6.12 | K | 认定值/10-6 | 9200 | 16600 | 24900 | 7700 | 10800 | 21000 | 平均值/10-6 | 9345 | 16799 | 24885 | 7633 | 10722 | 20069 | RE/% | 1.58 | 1.20 | -0.06 | -0.87 | -0.72 | -4.43 | Mn | 认定值/10-6 | 61 | 1240 | 41 | 30.5 | 12.1 | 173 | 平均值/10-6 | 63.25 | 1295 | 40.93 | 31.68 | 12.65 | 175.68 | RE/% | 3.69 | 4.44 | -0.17 | 3.87 | 4.55 | 1.55 | P | 认定值/10-6 | 1000 | 2840 | 3600 | 1250 | 2300 | 3600 | 平均值/10-6 | 1046 | 2788 | 3622 | 1247 | 2324 | 3544 | RE/% | 4.60 | -1.83 | 0.61 | -0.24 | 1.04 | -1.56 | Ti | 认定值/10-6 | 95 | 24 | 28 | 38 | 12 | 62 | 平均值/10-6 | 93.52 | 22.58 | 27.55 | 40.25 | 11.68 | 63.85 | RE/% | -1.56 | -5.92 | -1.61 | 5.92 | -2.67 | 2.98 | Ba | 认定值/10-6 | 18 | 58 | 9 | 98 | 24 | 36 | 平均值/10-6 | 17.44 | 56.98 | 9.28 | 99.63 | 23.54 | 34.44 | RE/% | -3.11 | -1.76 | 3.11 | 1.66 | -1.92 | -4.33 | Sr | 认定值/10-6 | 246 | 15.2 | 87 | 170 | 22 | 74 | 平均值/10-6 | 248.69 | 16.05 | 84.69 | 168.57 | 22.98 | 73.22 | RE/% | 1.09 | 5.59 | -2.66 | -0.84 | 4.45 | -1.05 | Zn | 认定值/10-6 | 55 | 26.3 | 35.3 | 18 | 11.2 | 25 | 平均值/10-6 | 53.39 | 26.58 | 33.67 | 17.62 | 10.86 | 23.96 | RE/% | -2.93 | 1.06 | -4.62 | -2.11 | -3.04 | -4.16 |
|
Accuracy tests of the method
|
[1] |
《岩石矿物分析》编委会. 岩石矿物分析:第四版第四分册[M]. 北京: 地质出版社, 2011:878-879,942-943.
|
[1] |
The Editorial Committee of Rock and Mineral Analysis. Rock and mineral analysis:The fourth edition:Vol.Ⅳ[M]. Beijing: Geological Publishing House, 2011:878-879,942-943.
|
[2] |
于兆水, 陈海杰, 张雪梅, 等. 微波消解—高分辨电感耦合等离子体质谱测定生物样品中55种元素[J]. 物探化探计算技术, 2014, 36(6):757-762.
|
[2] |
Yu Z S, Chen H J, Zhang X M, et al. Determination of 55 kinds of elements in biological sample using high resolution ICP-MS with microwave digestion[J]. Computing Techniques for Geophysical and Geochemical Exploration, 2014, 36(6):757-762.
|
[3] |
张勤, 李国会, 樊守忠, 等. X射线荧光光谱法测定土壤和水系沉积物等样品中碳、氮、氟、氯、硫、溴等42种主次和痕量元素[J]. 分析试验室, 2008, 27(11):51-57.
|
[3] |
Zhang Q, Li G H, Fan S Z, et al. Study on determination of 42 major,minor and trace elements in soil and stream sediment samples by X-ray fluorescence spectrometry[J]. Chinese Journal of Analysis Laboratory, 2008, 27(11):51-57.
|
[4] |
肖细炼, 李小丹, 刘金, 等. 粉末压片—波长色散X射线荧光光谱法测定地球化学样品中氯的方法研究[J]. 华南地质, 2021, 37(3):361-367.
|
[4] |
Xiao X L, Li X D, Liu J, et al. The method study on determination of chlorine in geochemical samples by wavelength dispersive X-ray fluorescence spectrometry with pressed powder[J]. South China Geology, 2021, 37(3):361-367.
|
[5] |
冯永明, 邢应香, 刘洪青, 等. 微波消解—电感耦合等离子体质谱法测定生物样品中微量硒的方法研究[J]. 岩矿测试, 2014, 33(1):34-39.
|
[5] |
Feng Y M, Xing Y X, Liu H Q, et al. Determination of trace selenium in biological samples by inductively coupled plasma-mass spectrometry with microwave digestion[J]. Rock and Mineral Analysis, 2014, 33(1):34-39.
|
[6] |
杨俊衡. 微波消解试样—原子荧光光谱法测定土壤中硒碲[J]. 理化检验:化学分册, 2008, 44(3):240-242.
|
[6] |
Yang J H. Microwave-assisted sample digestion AFS determination of Se and Te in soil[J]. Physical Testing and Chemical Analysis Part B:Chemical Analysis, 2008, 44(3):240-242.
|
[7] |
张维宇, 张土秀, 倪天增, 等. 程序控温石墨消解—原子荧光光谱法测定土壤中的硒[J]. 中国无机分析化学, 2011, 1(4):36-39.
|
[7] |
Zhang W Y, Zhang T X, Ni T Z, et al. Determination of total selenium in soil by atomic fluorescence spectrometry with program temperature-controlled graphite digestion[J]. Chinese Journal of Inorganic Analytical Chemistry, 2011, 1(4):36-39.
|
[8] |
张霖琳, 邢小茹, 吴国平, 等. 微波消解—ICP-MS测定人体血浆中30种痕量元素[J]. 光谱学与光谱分析, 2009, 29(4):1115-1118.
|
[8] |
Zhang L L, Xing X R, Wu G P, et al. Determination of thirty trace elements in human plasma by microwave digestion-ICP-MS[J]. Spectroscopy and Spectral Analysis, 2009, 29(4):1115-1118.
|
[9] |
田宝珍, 曹福苍, 雷鹏举, 等. 微波消解制样技术用于生物样品微量分析的研究[J]. 食品与发酵工业, 2000, 26(3):15-20.
|
[9] |
Tian B Z, Cao F C, Lei P J, et al. Dissolution of biological samples by microwave digestion for the determination of trace elements[J]. Food and Fermentation Industries, 2000, 26(3):15-20.
|
[10] |
杨萌, 魏星, 张璇, 等. 石墨炉原子吸收光谱法直接测定细胞中镉的研究[J]. 分析科学学报, 2022, 38(1):6-10.
|
[10] |
Yang M, Wei X, Zhang X, et al. Direct determination of cadmium in cells by graphite furnace atomic absorption spectrometry[J]. Journal of Analytical Science, 2022, 38(1):6-10.
|
[11] |
高明飞. 石墨炉原子吸收光谱法测定石脑油中砷[J]. 理化检验:化学分册, 2020, 56(6):726-729.
|
[11] |
Gao M F. Determination of arsenic in naphtha by graphite furnace atomic absorption spectrometry[J]. Physical Testing and Chemical Analysis Part B:Chemical Analysis, 2020, 56(6):726-729.
|
[12] |
Reboucas M, Ferreira S, Debarrosneto B, et al. Behabiour of chemical modifiers in the determination of arsenic by electrothermal atomic absorption spectrometry in petroleum products[J]. Talanta, 2005, 67(1):195-204.
|
[13] |
陈海杰, 马娜, 薄玮, 等. 土壤和水系沉积物中硒的价态分析方法研究[J]. 光谱学与光谱分析, 2021, 41(3):871-874.
|
[13] |
Chen H J, Ma N, Bo W, et al. Research on the valence state analysis method of selenium in soil and stream sediment[J]. Spectroscopy and Spectral Analysis, 2021, 41(3):871-874.
|
[14] |
陈海杰, 马娜, 陈卫明, 等. 抑制植物样品消解过程中硒挥发的方法[J]. 分析化学, 2020, 48(9):1268-1272.
|
[14] |
Chen H J, Ma N, Chen W M, et al. A method for suppressing volatile loss of selenium in digestion of plant samples[J]. Chinese Journal of Analytical Chemistry, 2020, 48(9):1268-1272.
|
[15] |
陈海杰, 马娜, 白金峰, 等. 基于外供氢气—氢化物—原子荧光光谱法测定地球化学样品中硒的研究[J]. 光谱学与光谱分析, 2020, 40(9):2896-2900.
|
[15] |
Chen H J, Ma N, Bai J F, et al. Study on determination of Se in geochemical samples by external supply H2-hydride generation atomic fluorescence spectrometry[J]. Spectroscopy and Spectral Analysis, 2020, 40(9):2896-2900.
|
[16] |
肖细炼, 朱园园, 陈燕波, 等. 交流电弧—光电直读发射光谱法测定岩石矿物样品中高含量锡[J]. 理化检验:化学分析, 2021, 57(3):241-246.
|
[16] |
Xiao X L, Zhu Y Y, Chen Y B, et al. Determination of high content of tin in rock and mineral samples by alternating current arc-optoelectronic direct reading emission spectrometry[J]. Physical Testing and Chemical Analysis Part B:Chemical Analysis, 2021, 57(3):241-246.
|
[17] |
肖细炼, 王亚夫, 张春林, 等. 交流电弧—光电直读发射光谱同时测定碳酸盐矿物中银硼锡的方法研究[J]. 岩矿测试, 2020, 39(5):699-708.
|
[17] |
Xiao X L, Wang Y F, Zhang C L, et al. Simultaneous determination of silver,boron and tin in carbonate minerals by alternating current-arc optoelectronic direct reading-emission spectrometry[J]. Rock and Mineral Analysis, 2020, 39(5):699-708.
|
[18] |
肖细炼, 王亚夫, 陈燕波, 等. 交流电弧光电直读发射光谱法测定地球化学样品中银硼锡[J]. 冶金分析, 2018, 38(7):27-32.
|
[18] |
Xiao X L, Wang Y F, Chen Y B, et al. Determination of silver,boron and tin in geochemical by alternating current arc optoelectronic direct reading emission spectrometry[J]. Metallurgical Analysis, 2018, 38(7):27-32.
|
[19] |
Ralf M, Jürgen H, Heike T, et al. Multielement trace determination in SiC powders:Assessment of interlaboratory comparisons aimed at the validation and standardization of analytical procedures with direct solid sampling based on ETV ICP OES and DC arc OES[J]. Analytical and Bioanalytical Chemistry, 2005, 383:1060-1074.
|
[20] |
刘宏伟, 符靓. 微波等离子体原子发射光谱测定Li4Ti5O12中的金属杂质元素[J]. 光谱学与光谱分析, 2021, 41(10):3021-3025.
|
[20] |
Liu H W, Fu L. Analysis of metal impurity elements in Li4Ti5O12through microwave plasma atomic emission spectroscopy[J]. Spectroscopy and Spectral Analysis, 2021, 41(10):3021-3025.
|
[21] |
胡璇, 李跃平, 石磊. 基体匹配法和内标法—电感耦合等离子体原子发射光谱测定铸造锌合金中高含量铝和铜光谱[J]. 冶金分析, 2014, 34(4):17-20.
|
[21] |
Hu X, Li Y P, Shi L. Comparison on the spectral interference correction in the determination of high content aluminum and copper in casting zinc alloy by inductively coupled plasma atomic emission spectrometry with matrix matching method and internal standard method[J]. Metallurgical Analysis, 2014, 34(4):17-20.
|
[22] |
肖凡, 张宁, 姜云军, 等. 密闭酸溶—电感耦合等离子体原子发射光谱法测定地球化学调查样品中硼[J]. 冶金分析, 2018, 38(6):50-54.
|
[22] |
Xiao F, Zhang N, Jiang Y J, et al. Determination of boron in geochemical survey sample by inductively coupled plasma atomic emission spectrometry after acid dissolution in closed system[J]. Metallurgical Analysis, 2018, 38(6):50-54.
|
[23] |
姜云军, 李星, 姜海伦, 等. 四酸敞口溶解—电感耦合等离子体发射光谱法测定土壤中的硫[J]. 岩矿测试, 2018, 37(2):152-158.
|
[23] |
Jiang Y J, Li X, Jiang H L, et al. Determination of sulfur in soil by inductively coupled plasma-optical emission spectrometry with four acids open dissolution[J]. Rock and Mineral Analysis, 2018, 37(2):152-158.
|
[24] |
王佳翰, 李正鹤, 杨峰, 等. 碱熔—电感耦合等离子体原子发射光谱法测定海洋沉积物中铝铁锰钛[J]. 冶金分析, 2012, 41(3):68-74.
|
[24] |
Wang J H, Li Z H, Yang F, et al. Determination of aluminum,iron,manganese,titanium in marine sediments by inductively coupled plasma atimic emission spectrometry with alkali fusion[J]. Metallurgical Analysis, 2012, 41(3):68-74.
|
[25] |
刘海明, 武明丽, 成景特. 酸溶分解—电感耦合等离子体质谱内标法测定地质样品中的痕量银[J]. 岩矿测试, 2021, 40(3):444-450.
|
[25] |
Liu H M, Wu M L, Cheng J T. Determination of trace silver in geological samples by inductively coupled plasma-mass spectrometry with acid decomposition and internal standard calibration[J]. Rock and Mineral Analysis, 2021, 40(3):444-450.
|
[26] |
史瑞新, 赵艳萍, 管鹏, 等. 超声提取—单颗粒电感耦合等离子体质谱法测定牙膏中纳米银颗粒[J]. 分析化学, 2020, 48(4):523-529.
|
[26] |
Shi R X, Zhao Y P, Guan P, et al. Determination of silver nanoparticles in toothpaste by single particle-inductively coupled plasma-mass spectrometry with ultrasonic extraction[J]. Chinese Journal of Analytical Chemistry, 2020, 48(4):523-529.
|
[27] |
朱兆洲, 杨鑫鑫, 李军, 等. 固相萃取—电感耦合等离子体质谱法测定地表高盐水体中的痕量稀土元素[J]. 光谱学与光谱分析, 2022, 42(6):1862-1866.
|
[27] |
Zhu Z Z, Yang X X, Li J, et al. Determination of rare earth elements in high-salt water by ICP-MS after pre-concentration using a chelating resin[J]. Spectroscopy and Spectral Analysis, 2022, 42(6):1862-1866.
|
[28] |
《岩石矿物分析》编委会. 岩石矿物分析:第四版第一分册[M]. 北京: 地质出版社, 2011:471-473.
|
[28] |
The Editorial Committee of Rock and Mineral Analysis. Rock and mineral analysis:The fourth edition:Vol.Ⅰ[M]. Beijing: Geological Publishing House, 2011:471-473.
|
[1] |
CHEN Hai-jie, YU Zhao-shui, XING Xia, ZHANG Xue-mei, ZHANG Qin. THE APPLICATION OF THE MICROWAVE DIGESTION-COLD ATOMIC FLUORESCENCE SPECTROSCOPY TO THE DETERMINATION OF Hg IN THE PLANTS[J]. Geophysical and Geochemical Exploration, 2014, 38(2): 393-395,401. |
[2] |
HUA Yong-tao, CHENG Feng, LAI Wan-chang, YANG Qiang. THE APPLICATION OF THE XRF TECHNOLOGY TO GEOLOGICAL EXPLORATION IN A CERTAIN PLACE OF XINJIANG[J]. Geophysical and Geochemical Exploration, 2006, 30(4): 370-373. |
|
|
|
|