|
|
Application of frequency division AVO in the gas-bearing analysis of reservoir in the Xu-2 Member of the Anyue gas field |
SONG Chen1( ), JIN Ji-Neng1( ), PAN Ren-Fang1, ZHU Bo-Yuan1, YU Zhi-Hua2, TANG Xiao-Ling3 |
1. School of Earth Sciences,Yangtze University,Wuhan 430100,China 2. Research Institute of Petroleum Exploration and Development,Beijing 100007,China 3. Exploration and Development Research Institute of Huabei Oilfield,Renqiu 062552,China |
|
|
Abstract The second member of the Xujiahe Formation (the Xu-2 Member) in the Anyue area of the Sichuan Basin enjoys abundant tight gas reserves.However,this member has complex geological characteristics,and conventional amplitude versus offset (AVO) analysis has relatively low precision in predicting the gas-bearing property of the reservoir in this member.Therefore,it is necessary to develop a more fine-scale seismic prediction method. Based on the analysis of single-well petrophysical characteristics and forward models,the AVO attributes of the dominant frequency range were selected through the frequency division AVO inversion based on wavelet transform.Then,these AVO attributes were fused to form the gas-bearing indicator,using which the distribution of favorable gas-enrichment zones in the Xu-2 Member of the Anyue area was predicted.The results are as follows:The gas zones in the Xu-2 Member primarily present class IV AVO anomalies;For the gas and water zones,their AVO responses in the dominant frequency range (35~45 Hz) differed significantly from those in the full frequency band,and their gas-bearing response characteristics were more pronounced in the dominant frequency range;The AVO attributes sensitive to the gas-bearing property included the difference in the S-wave velocity,the difference in Poisson's ratio, and the fluid factor.The gas-bearing indicator was obtained through the fusion of these AVO attributes,and the negative anomalies of the gas-bearing indicator were indicative of favorable gas-bearing zones;The seismic-log correlation shows that the AVO attributes in the dominant frequency range yielded positive gas-bearing prediction effects.The method proposed in this study is expected to provide technical support for unconventional oil and gas exploration.
|
Received: 04 June 2022
Published: 05 July 2023
|
|
|
|
|
|
Spectrum difference diagram of sidetrack in reservoir with different fluid types
|
|
Seismic spectrum characteristics of typical gas and water layers
|
|
Forward modeling of well A and well B a—logging curve and forward trace gather of well A;b—logging curve and forward trace gather of well B;c—AVO curve of well A;d—AVO curve of well B
|
|
P-G cross plot of multi well gas and water layer in the study area
|
|
Frequency division AVO curve of well A and well B a—gas layer of well A;b—water layer of well B
|
|
Frequency division P-G cross plot of gas layer of well a and water layer of well B
|
|
Prestack seismic gathers passing through gas layer of well A(a) and water layer of well B(b)
|
|
Amplitude response characteristics of original prestack gathers of gas layer in well A(a) and water layer in well B(b)
|
|
35~45 Hz angle gathering through gas layer of well A(a) and water layer of well B(b)
|
|
Amplitude response curve of 35~45 Hz frequency divided data volume at the well side of gas layer of well A(a) and water layer of well B(b)
|
AVO属性 | 物理意义 | 计算公式 | | 差异横波速度 | 反映出横波速度的 变化率特征 | | 差异密度 | 反映密度的变化 率特征 | | 差异纵波速度 | 反映出纵波速度的 变化率特征 | | 流体因子 | 显示与Castagna方 程不符的含油气区 | | 泊松比 | 反映岩层泊松比 的变化特征 | | 横波反射系数 | 反映横波阻抗 的特征 | |
|
Physical meaning and formula of AVO attribute
|
|
Comparison of coincidence between AVO attribute and gas bearing response of multiple wells
|
|
Prediction profile of dominant frequency band with 35~45 Hz attribute of well Yue111—Yue118—Yue145 well
|
|
Plane comparison of DHI gas content prediction of upper sub member of Xujiahe formation 2
|
井名 | 气测 结果 | AVO 响应 | 全频井震对比 | 分频井震对比 | 含气 响应 | 吻合 情况 | 含气 响应 | 吻合 情况 | Yue103 | 气井 | 负异常 | 有 | 吻合 | 有 | 吻合 | Yue111 | 气井 | 负异常 | 有 | 较吻合 | 有 | 吻合 | Yue113 | 气井 | 负异常 | 有 | 吻合 | 有 | 吻合 | Yue114 | 气井 | 正异常 | 无 | 不吻合 | 无 | 不吻合 | Yue118 | 气井 | 负异常 | 无 | 不吻合 | 有 | 较吻合 | Yue122 | 水井 | 负异常 | 无 | 吻合 | 无 | 吻合 | Yue145 | 气井 | 负异常 | 无 | 不吻合 | 有 | 吻合 | Yue101-3 | 水井 | 正异常 | 无 | 吻合 | 无 | 吻合 | Yue112 | 水井 | 正异常 | 无 | 吻合 | 无 | 吻合 | Yue125 | 水井 | 正异常 | 无 | 吻合 | 无 | 吻合 |
|
Comparison of abnormal response of AVO gas bearing property
|
[1] |
谢继容, 张健, 李国辉, 等. 四川盆地须家河组气藏成藏特点及勘探前景[J]. 西南石油大学学报:自然科学版, 2008, 30(6):40-44.
|
[1] |
Xie J R, Zhang J, Li G H, et al. Exploration prospect and gas reservoir characteristics of Xujiahe Formation in Sichuan Basin[J]. Journal of Southwest Petroleum University:Science &Technology Edition, 2008, 30(6):40-44.
|
[2] |
郝国丽, 柳广弟, 谢增业, 等. 川中地区须家河组致密砂岩气藏气水分布模式及影响因素分析[J]. 天然气地球科学, 2010, 21(3):427-434.
|
[2] |
Hao G L, Liu G D, Xie Z Y, et al. Gas water distributed pattern in Xujiahe Formation tight gas sandstone reservoir and influential factor in central Sichuan Basin[J]. Natural Gas Geoscience, 2010, 21(3):427-434.
|
[3] |
唐跃, 王靓靓, 崔泽宏. 川中地区上三叠统须家河组气源分析[J]. 地质通报, 2011, 30(10):1608-1613.
|
[3] |
Tang Y, Wang L L, Cui Z H. An analysis of the gas source in the Upper Triassic Xujiahe Formation,central Sichuan Basin[J]. Geological Bulletin of China, 2011, 30(10):1608-1613.
|
[4] |
郭彤楼. 四川盆地北部陆相大气田形成与高产主控因素[J]. 石油勘探与开发, 2013, 40(2):139-149.
|
[4] |
Guo T L. Key controls on accumulation and high production of large non-marine gas fields in northern Sichuan Basin[J]. Petroleum Exploration and Development, 2013, 40(2):139-149.
|
[5] |
Yu Y, Lin L B, Zhai C B, et al. Impacts of lithologic characteristics and diagenesis on reservoir quality of the 4th member of the Upper Triassic Xujiahe Formation tight gas sandstones in the western Sichuan Basin,southwest China[J]. Marine and Petroleum Geology, 2019, 107:1-19.
|
[6] |
Zhao C J, Jiang Y L, Wang L J. Data-driven diagenetic facies classification and well-logging identification based on machine learning methods:A case study on Xujiahe tight sandstone in Sichuan Basin[J]. Journal of Petroleum Science and Engineering, 2022,217.
|
[7] |
郑荣才, 戴朝成, 朱如凯, 等. 四川类前陆盆地须家河组序—岩相古地理特征[J]. 地质论评, 2009, 55(4):484-495.
|
[7] |
Zheng R C, Dai C C, Zhu R K, et al. Sequence based lithofacies and paleogeographic characteristics of Upper Triassic Xujahe Formation in Sichuan Basin[J]. Geological Review, 2009, 55(4):484-495.
|
[8] |
关旭, 金吉能, 杨威, 等. 川中地区须家河组岩性气藏特征与含气有利区预测——以安岳—磨溪地区须家河组二段为例[J]. 天然气地球科学, 2022, 33(3):358-368.
|
[8] |
Guan X, Jin J N, Yang W, et al. Lithologic gas reservoir characteristics and prediction of gas-bearing favorable zone ofthe Xujiahe Formation in central Sichuan Basin:Case study of the 2nd member of Xujiahe Formation in Anyue-Moxi areas[J]. Natural Gas Geoscience, 2022, 33(3):358-368.
|
[9] |
Lu H Y, Cheng B J, Shen Z M, et al. Gas and water reservoir differentiation by time-frequency analysis:a case study in southwest China[J]. Acta Geodaetica et Geophysica, 2013, 48(4):439-450.
|
[10] |
陈小宏, 田立新, 黄饶. 地震分频AVO方法研究现状与展望[J]. 海相油气地质, 2009, 14(4):60-66.
|
[10] |
Chen X H, Tian L X, Huang R. Research progressing on frequency dependent AVO analysis[J]. Marine Origin Petroleum Geology, 2009, 14(4):60-66.
|
[11] |
张德明, 刘志刚, 臧殿光, 等. 基于叠前同时反演的致密砂岩储层预测及含气性识别——以苏里格S区块为例[J]. 物探与化探, 2022, 46(3):645-652.
|
[11] |
Zhang D M, Lin Z G, Zang D G, et al. Prediction and identification of gas-bearing gas-bearing properties of tight sandstone reservoirs through simultaneous pre-stack inversion:A case study of block S in Sulige gas field[J]. Geophysical and Geochemical Exploration, 2022, 46(3):645-652.
|
[12] |
高静怀, 陈文超, 李幼铭, 等. 广义S变换与薄互层地震响应分析[J]. 地球物理学报, 2003, 46(4):526-532.
|
[12] |
Gao J H, Chen W C, Li Y M, et al. Generalized S transform and seismic response analysis of thin interbeds[J]. Chinese Journal of Geophysics, 2003, 46(4):526-532.
|
[13] |
路慎强. 叠前分频AVO分析方法在罗家地区的应用研究[J]. 石油物探, 2013, 52(2):151-156.
|
[13] |
Lu S Q. Application of prestack frequency-division AVO analysis method in Luojia area[J]. Geophysical Prospecting for Petroleum, 2013, 52(2):151-156.
|
[14] |
宁媛丽, 韩立国, 周子阳, 等. 应用反演谱分解去除调谐效应的分频AVO技术[J]. 物探化探计算技术, 2012, 34(3):243-248.
|
[14] |
Ning Y L, Han L G, Zhou Z Y, et al. Frequency-dependent AVO based on removing tuning effect via inverse spectral decomposition[J]. Computing Techniques for Geophysical and Geochemical Exploration, 2012, 34(3):243-248.
|
[15] |
孔栓栓, 韩自军, 张德龙, 等. 分频振幅检测“亮点”型浅层气的方法研究及应用[J]. 物探与化探, 2019, 43(3):626-633.
|
[15] |
Kong S S, Han Z J, Zhang D L, et al. The study and application of the method using frequency division amplitude to recognizing " bright spot" shallow gas layers[J]. Geophysical and Geochemical Exploration, 2019, 43(3):626-633.
|
[16] |
左国平, 范国章, 蔡铮, 等. 地震分频 AVO 技术在孟加拉湾海域深水沉积储层烃类检测中的应用[J]. 天然气地球科学, 2020, 31(4):567-577.
|
[16] |
Zuo G P, Fan G Z, Cai Z, et al. The application of seismic frequency decomposition AVO method in offshore deep-water sedimentary reservoirs hydrocarbon detection in the Bay of Bengal[J]. Natural Gas Geoscience, 2020, 31(4):567-577.
|
[17] |
金吉能, 潘仁芳, 周洋, 等. 建南地区须四段致密砂岩含气储层预测研究[J]. 科学技术与工程, 2015, 15(8):150-156.
|
[17] |
Jin J N, Pan R F, Zhou Y, et al. Predicting tight gas-bearing Sandstone reservoir of the 4th Xijiahe Formation in Jiannan area[J]. Science Technology and Engineering, 2015, 15(8):150-156.
|
[18] |
李新豫, 张静, 包世海, 等. 川中地区须二段气藏地震预测陷阱分析及对策——以龙女寺区块为例[J]. 岩性油气藏, 2020, 32(1):120-127.
|
[18] |
Li X Y, Zhang J, Bao S H, et al. Analysis and countermeasures of seismic prediction traps for Xu-2 gas reservoir in central Sichuan Basin:a case study from Longnyusi block[J]. Lithologic Reservoirs, 2020, 32(1):120-127.
|
[19] |
王卫红, 姜在兴, 潘仁芳. AVO交会分析及其应用[J]. 西安石油学院学报:自然科学版, 2003, 18(2):5-8.
|
[19] |
Wang W H, Jiang Z X, Pan R F. AVO cross plot analysis and its application[J]. Journal of Xi'an Petroleum Institute:Natural Science Edition, 2003, 18(2):5-8.
|
[20] |
Li L, Cai H Y, Jiang Q T, et al. An empirical signal separation algorithm for multicomponent signals based on linear time-frequency analysis[J]. Mechanical Systems and Signal Processing, 2019, 121:791-809.
|
[21] |
路鹏飞, 杨长春, 郭爱华. 频谱成像技术研究进展[J]. 地球物理学进展, 2007, 22(5):1517-1521.
|
[21] |
Lu P f, Yang C C, Guo A H. The present research on frequency spectrum imaging technique[J]. Progress in Geophysics, 2007, 22(5):1517-1521.
|
[22] |
Maciusowicz M, Psuj G. Analysis of the possibility of using various time-frequency transformation methods to Barkhausen noise characterization for the need of magnetic anisotropy evaluation in steels[J]. Applied Sciences, 2021, 11(13):6193.
|
[23] |
陈胜, 欧阳永林, 曾庆才, 等. 匹配追踪子波分解重构技术在气层检测中的应用[J]. 岩性油气藏, 2014, 26(6):111-114.
|
[23] |
Chen S, Ouyang Y L, Zeng Q C, et al. Application of matching pursuit wavelet decomposition and reconstruction technique to reservoir prediction and gas detection[J]. Lithologic Reservoirs, 2014, 26(6):111-114.
|
[24] |
Morlet G, Fourgeau E, Giard D. Wave propagation and sampling theory partI:complex signal and scat-tering in multilayered media[J]. Geophysics, 1982, 47(2):203-221.
|
[25] |
Pandey V, Sain K. AVA analysis of BSR in fractured filled gas-hydrates reservoir in Krishna-Godavari Basin,India[J]. Journal of the Geological Society of India, 2022, 98:1253-1260.
|
[26] |
孟宪军, 姜秀娣, 黄捍东, 等. 叠前AVA广义非线性纵、横波速度反演[J]. 石油地球物理勘探, 2004, 39(6):645-650.
|
[26] |
Meng X J, Jiang X D, Huang H D, et al. Generalized non-linear P wave and S wave velocity inversion of prestack AVA[J]. Oil Geophysical Prospecting, 2004, 39(6):645-650.
|
[27] |
包培楠, 王维红, 李文龙, 等. CRP道集优化处理及其在大庆油田S区的应用[J]. 物探与化探, 2019, 43(5):1030-1037.
|
[27] |
Bao P N, Wang W H, Li W L, et al. CRP gather optimal processing and its application to S area of Daqing oilfield[J]. Geophysical and Geochemical Exploration, 2019, 43(5):1030-1037.
|
[28] |
郭贵安, 关旭, 肖富森, 等. 四川盆地中部侏罗系沙溪庙组致密砂岩气藏地震一体化描述技术[J]. 天然气工业, 2022, 42(1):40-50.
|
[28] |
Guo G A, Guan X, Xiao F S, et al. Integrated seismic description technology for tight sandstone gas reservoir of Jurassic Shaximiao Formation in the central Sichuan Basin[J]. Natural Gas Industry, 2022, 42(1):40-50.
|
[29] |
潘仁芳. AVO的内涵与外延[J]. 石油天然气学报, 2006, 28(2):50-55.
|
[29] |
Pan R F. Intension and extension of AVO[J]. Journal of Oil and Gas Technology, 2006, 28(2):50-55.
|
[30] |
Aki K, Riehards P G. Quantitative seismology:Theory and methods[M]. New York: Earthquake Press,1980.
|
[31] |
Shuey R T. A simplification of the Zoeppritz equations[J]. Geophysics, 1985, 50(4):609-614.
|
[32] |
任丽丹, 王鹏, 刘成芳, 等. 叠前AVO反演技术在顺南地区碳酸盐岩储层含油气性预测中的应用[J]. 工程地球物理学报, 2018, 15(3):292-298.
|
[32] |
Ren L D, Wang P, Liu C F, et al. The application of pre-stack AVO inversion technology to the oil-bearing prediction of carbonate reservoirs in shunnan area[J]. Chinese Journal of Engineering Geophysics, 2018, 15(3):292-298.
|
[33] |
苏建龙, 屈大鹏, 陈超, 等. 叠前地震反演方法对比分析——焦石坝页岩气藏勘探实例[J]. 石油地球物理勘探, 2016, 51(3):581-588.
|
[33] |
Su J L, Qu D P, Chen C, et al. Comparison and analysis of pre stack seismic inversion methods:An example of Jiaoshiba shale gas reservoir exploration[J]. Oil Geophysical Prospecting, 2016, 51(3):581-588.
|
[1] |
FENG Xin. Application of flat spots in detection of hydrocarbons in deep-water clastic reservoirs in West Africa[J]. Geophysical and Geochemical Exploration, 2022, 46(2): 433-443. |
[2] |
WANG Cheng-Quan, WANG Meng-Hua, ZHOU Jia-Yi, WANG Sheng-Liang, YANG Zhou-Peng, LIU Hui, ZHANG Hong-Wen. Application of multi-attribute fusion in quantitative prediction of reservoirs: A case study of Yangshuiwu buried hill in Langgu sag[J]. Geophysical and Geochemical Exploration, 2022, 46(1): 87-95. |
|
|
|
|