|
|
Numerical simulation of the effects of borehole enlargement on sonic logging response of horizontal wells |
SU Lin-Shuai1,2,3( ), CAI Ming1,2( ), ZHENG Zhan-Shu4, XU Bao-Bao2, LUO Ju-Sen2, HU Yan-Jie2, ZHANG Jing-Yu2 |
1. Key Laboratory of Exploration Technologies for Oil and Gas Resources,Ministry of Education,Yangtze University,Wuhan 430100,China 2. College of Geophysics and Petroleum Resources,Yangtze University,Wuhan 430100,China 3. Safety,Environmental Protection and Engineering Supervision Center of Tarim Oilfield Company,PetroChina,Korla 841000,China 4. Liaohe Branch,China Petroleum Logging Co. Ltd.,Panjin 124011,China |
|
|
Abstract Horizontal well drilling is increasingly being widely applied. However, sonic logging-one of the most important reservoir assessment methods-tends to be affected by the borehole conditions in the application of horizontal wells,leading to notably reduced application effects.In view of this fact,this paper conducts the forward simulation of the radial and axial size changes induced by borehole enlargement and the changes in enlargement positions using the three-dimensional finite difference method,with the focus on the effects of borehole enlargement on the waveform amplitude,arrival times,and velocities of waves in the sonic logging of horizontal wells.The results are as follows.In the case that the borehole enlargement occurred between the sonic transmitter and the nearest receiver,the changes in borehole enlargement parameters had no effect on the measured results of the compressional and shear wave velocities but led to the notable decrease in waveform amplitude.The amplitude of compressional and shear waves decreased with an increase in the thickness and length of the enlargement cylinder but was almost not affected by the distance between the sonic transmitter and the expansion section.The compressional wave arrival time increased with an increase in the thickness and length of the enlargement cylinder but slightly decreased with an increase in the distance between the sonic transmitter and the expansion section.This study clarifies the laws of the effects of borehole enlargement on the sonic logging response of horizontal wells,and it will provide guidance and assistance for further research on the methods for influencing factor correction in the sonic logging of horizontal wells.
|
Received: 14 September 2020
Published: 28 June 2022
|
|
Corresponding Authors:
CAI Ming
E-mail: 675450484@qq.com;caiming@yangtzeu.edu.cn
|
|
|
|
|
Schematic diagram of staggered grid division
|
空间阶数2N | m | am | 2 | 0 | 1 | 4 | 0 1 | 9/8 -1/24 | 6 | 0 1 2 | 75/64 -25/384 3/640 |
|
Staggered grid difference coefficient for common spatial order
|
|
Horizontal well model
|
参数 | 纵波速度/ (m·s-1) | 横波速度/ (m·s-1) | 密度/ (kg·m-3) | 地层 | 4000 | 2300 | 2500 | 井内流体 | 1500 | — | 1000 |
|
Paraments of formation and borehole fluid
|
|
The comparison result of 3D-FD and RAI waveforms
|
|
Horizontal well model with borehole expansion
|
|
Acoustic logging waveforms for different borehole radial expansion sizes
|
|
The relationship between compressional and shear wave amplitudes with borehole radial expansion size
|
|
The relationship between compressional and shear wave velocities with borehole radial expansion size
|
|
The relationship between compressional wave arrival with borehole radial expansion size
|
|
Acoustic logging waveforms for different borehole axial expansion sizes
|
|
The relationship between compressional wave amplitude with borehole axial expansion size
|
|
The relationship between compressional wave arrival with borehole axial expansion size
|
|
Acoustic logging waveforms for different borehole expansion position
|
|
The relationship between compressional and shear wave amplitudes with borehole expansion position
|
|
The relationship between compressional wave arrival with borehole expansion position
|
[1] |
吴月先, 钟水清, 徐永高, 等. 中国水平井技术实力现状及发展趋势[J]. 石油矿场机械, 2008, 37(3):33-36.
|
[1] |
Wu Y X, Zhong S Q, Xu Y G, et al. Present condition of horizontal well technique strength and its development trend in China[J]. Oil Field Equipment, 2008, 37(3):33-36.
|
[2] |
章成广, 江万哲, 潘和平. 声波测井原理与应用[M]. 北京: 石油工业出版社, 2009.
|
[2] |
Zhang C G, Jiang W Z, Pan H P. Principle and application of acoustic logging[M]. Beijing: Petroleum Industry Press, 2009.
|
[3] |
蔡明, 章成广, 韩闯, 等. 微裂缝对横波衰减影响的实验研究及其在致密砂岩裂缝评价中的应用[J]. 中国石油大学学报:自然科学版, 2020, 44(1):45-52.
|
[3] |
Cai M, Zhang C G, Han C, et al. Experimental research of effect of microfracture on shear wave attenuation and its application on fracture evaluation in tight sand formation[J]. Journal of China University of Petroleum:Natural Science Edition, 2020, 44(1):45-52.
|
[4] |
蔡明, 章成广, 唐军, 等. 参数估计法声波远探测反射波提取效果影响因素研究[J]. 西安石油大学学报:自然科学版, 2020, 35(1):42-48.
|
[4] |
Cai M, Zhang C G, Tang J, et al. Study on factors of influencing extraction effect of reflection wave in acoustic remote detection using parameter estimation method[J]. Journal of Xi'an Shiyou University:Natural Science Edition, 2020, 35(1):42-48.
|
[5] |
Cai M, Qiao W, Ju X, et al. Lossless compression method for acoustic waveform data based on wavelet transform and bit-recombination mark coding[J]. Geophysics, 2013, 78(5):V219-V228.
|
[6] |
周灿灿, 王昌学. 水平井测井解释技术综述[J]. 地球物理学进展, 2006, 21(1):152-160.
|
[6] |
Zhou C C, Wang C X. Technology review on the log interpretation of horizontal well[J]. Progress in Geophysics, 2006, 21(1):152-160.
|
[7] |
Stephen R A, Cardo-Casas F, Cheng C H. Finite-difference synthetic acoustic logs[J]. Geophysics, 1985, 50(10):1588-1609.
|
[8] |
Randall C J, Scheibner D J, Wu P T. Multipole borehole acoustic waveforms: Synthetic logs with beds and borehole washouts[J]. Geophysics, 1991, 56(11):1757-1769.
|
[9] |
Chen N Y. Borehole wave propagation in isotropic and anisotropic media:Three-dimensional finite difference approach[D]. Cambridge: Massachusetts Institute of Technology, 1994.
|
[10] |
Mittet R, Renlie L. High-order,finite-difference modeling of multipole logging in formations with anisotropic attenuation and elasticity[J]. Geophysics, 1996, 61(1):21-33.
|
[11] |
陶果, 张友生, 张洪娥, 等. 用于声波测井的大型三维有限差分模拟程序[J]. 测井技术, 2001, 25(4):273-277.
|
[11] |
Tao G, Zhang Y S, Zhang H E, et al. 3D Finite difference simulating program for acoustic logging[J]. Well Logging Technology, 2001, 25(4):273-277.
|
[12] |
陶果, 何峰江, 王兵, 等. 声反射成像测井在地层中的三维波场模拟方法研究[J]. 中国科学D辑:地球科学, 2008, 38(S1):166-173.
|
[12] |
Tao G, He F J, Wang B, et al. Study on 3D wave field simulation of acoustic reflection imaging logging in formation[J]. Science of China Series D:Earth Science, 2008, 38(S1):166-173.
|
[13] |
陈德华, 丛健生, 徐德龙, 等. 裂缝性地层中的井孔声场模拟[J]. 大庆石油学院学报, 2004, 28(3):4-6.
|
[13] |
Chen D H, Cong J S, Xu D L, et al. Borehole acoustic field simulation in fractured formation[J]. Journal of Daqing Petroleum Institute, 2004, 28(3):4-6.
|
[14] |
何峰江, 陶果, 王锡莉. 贴井壁声波测井仪的有限差分模拟研究[J]. 地球物理学报, 2006, 49(3):923-928.
|
[14] |
He F J, Tao G, Wang X L. Finite difference modeling of the acoustic field by sidewall logging devices[J]. Chinese J. Geophys., 2006, 49(3):923-928.
|
[15] |
丛健生, 乔文孝. 水平井地层界面声波测井响应模拟分析[J]. 测井技术, 2008, 32(1):29-32.
|
[15] |
Cong J S, Qiao W X. Simulated response of acoustic log in horizontal borehole placing on interface of two formations[J]. Well Logging Technology, 2008, 32(1):29-32.
|
[16] |
陈木银, 何西攀, 金小慧. 水平井声波时差测井响应特征研究[J]. 国外测井技术, 2013(4):38-41.
|
[16] |
Chen M Y, He X P, Jin X H. Study on the characteristics of acoustic slowness difference logging response in horizontal wells[J]. World Well Logging Technology, 2013(4):38-41.
|
[17] |
杨歆. 水平井及大斜度井声波测井时差校正方法研究[D]. 北京: 中国石油大学(北京), 2016.
|
[17] |
Yang X. Research on correction method of sonic logging slowness in horizontal wells and high angle deviated wells[D]. Beijing: China University of Petroleum (Beijing), 2016.
|
[18] |
张鹏云. 基于声电组合的水平井地层评价方法研究[D]. 青岛: 中国石油大学(华东), 2016.
|
[18] |
Zhang P Y. Research on horizontal well formation evaluation method based on acoustic and resistivity logging[D]. Qingdao: China University of Petroleum(East China), 2016.
|
[19] |
Liu H, Wang B, Tao G, et al. Study on the simulation of acoustic logging measurements in horizontal and deviated wells[J]. Applied Geophysics, 2017, 14(3):337-350.
|
[20] |
刘黎, 章成广, 蔡明, 等. 裂缝对井眼声波的传播影响规律研究[J]. 物探与化探, 2019, 43(6):1333-1340.
|
[20] |
Liu L, Zhang C G, Cai M, et al. Studies on the effect of crack on the propagation of acoustic waves in wellbore[J]. Geophysical and Geochemical Exploration, 2019, 43(6):1333-1340.
|
[21] |
王秀明, 张海澜, 王东. 利用高阶交错网格有限差分法模拟地震波在非均匀孔隙介质中的传播[J]. 地球物理学报, 2003, 46(6):842-849.
|
[21] |
Wang X M, Zhang H L, Wang D. Modelling of seismic wave propagation in heterogeneous poroelastic media using a high-order staggered finite-difference method[J]. Chinese J. Geophys., 2003, 46(6):842-849.
|
[22] |
严红勇, 刘洋. Kelvin-Voigt黏弹性介质地震波场数值模拟与衰减特征[J]. 物探与化探, 2012, 36(5):806-812.
|
[22] |
Yan H Y, Liu Y. Numerical modeling and attenuation characteristics of seismic wavefield in Kelvin-Voigt viscoelastic media[J]. Geophysical and Geochemical Exploration, 2012, 36(5):806-812.
|
[23] |
Komatitsch D, Martin R. An unsplit convolutional perfectly matched layer improved at grazing incidence for the seismic wave equation[J]. Geophysics, 2007, 72(5):SM155-SM167.
|
[24] |
Martin R, Komatitsch D, Ezziani A. An unsplit convolutional perfectly matched layer improved at grazing incidence for seismic wave propagation in poroelastic media[J]. Geophysics, 2008, 73(4):T51-T61.
|
[25] |
廖扬强, 余庆. 大斜度井水平井井壁力学稳定性技术现状[J]. 钻采工艺, 2003, 26(3):13-16.
|
[25] |
Liao Y Q, Yu Q. Technical status of wellbore mechanical stability of horizontal well with large inclination[J]. Drilling Process, 2003, 26(3):13-16.
|
[1] |
CHEN Chao-Qun, DAI Hai-Tao, GAO Qin, CHEN Jun-Jie, LUO Wen-Li, WANG Zhi-Ru. A processing method for seismic data consistency under complex surface conditions and its applications[J]. Geophysical and Geochemical Exploration, 2023, 47(4): 954-964. |
[2] |
CHEN Hai-Wen, YE Yi-Xin, YANG Shuo-Jian, QIN Jin-Sheng. A study on the influence of side anomalies in resistivity-based advance detection based on an unstructured finite element method[J]. Geophysical and Geochemical Exploration, 2023, 47(4): 975-985. |
|
|
|
|