|
|
Research progress of methane microseepage in petroliferous basins and its significance for oil-gas exploration |
ZOU Yu1( ), WANG Guo-Jian1, YANG Fan2, CHEN Yuan1 |
1. Wuxi Research Institute of Petroleum Geology,Sinopec Petroleum Exploration and Production Research Institute,Wuxi 214126,China 2. Sinopec Petroleum Exploration and Production Research Institute,Beijing 100083,China |
|
|
Abstract Great progress has been made in the formation mechanisms of surface characteristics of gas microseepagesince the start of the 21st century, which is significant for oil-gas exploration. The microseepage in petroliferous basins is dominated by methane, which migrates nearly vertically from source rocks or reservoirs toward ground surface. The chemical, physical, and biological variation characteristics produced on the ground surface approximately reflect the oil reservoirs underground. Therefore, the methane microseepage is an objective and important part of the petroleum seepage system and has replaced microseepage as the most effective window for the tracing of underground reservoirs on the ground surface at present. Methane microseepage can be directly monitored on ground surface and in water and atmosphere, and the component concentrations and isotopic composition of methane-bearing hydrocarbon gases serve as the first-hand important data for the assessment of underground oil and gas. The data indirectly monitored mainly source from microorganisms, vegetation, minerals, radioactivity, and magnetism on the ground surface. Similar to the geochemical exploration data directly obtained, these abnormal data canbe distinguished from the background values of the ground surface far away from the oil reservoirs, and the distribution areas of the anomalies will become important targets of favorable exploration areas. It will play an increasingly important role in the future integrated oil and gas explorationto gain in-depth understanding of methane microseepage mechanisms, avoid single monitoring method and one-sided understanding, transform ideas to adoptsurface integrated monitoring methods, and establish new mathematical analysis systems.
|
Received: 17 March 2021
Published: 25 February 2022
|
|
|
|
|
|
Natural methane generation and release
|
| 微渗漏 | 宏观渗漏 | 观察方法 | 物理、化学及生物手段 | 地表现象宏观可见(如泥火山) | 烃类组成 | 轻烃(C1-C5),可挥发芳烃 | 轻烃,可挥发的芳烃,重质/轻质原油 | 运移机制 | 微裂缝中的连续气相流动 | 沿构造间断处渗出 | 运移方向 | 以垂向为主 | 以横向、侧向为主 | 地表通量 | 约10 mg/(m2·d)[12] | 100~1 000 mg/(m2·d)[12] | 地表分布特征 | 面源 | 点源 | 受地表因素干扰程度 | 易受影响 | 不受影响 | 全球含油气盆地出现频率 | > 80%[19] | 约20%[25] | 与油气藏空间关系 | 油气藏上方或上方附近 | 沿地表不整合面或断层分布 | 油气勘探前景 | 较大 | 较小(基本于20世纪完成) |
|
Comparison between different aspects of micro-and macro-seepage in petroleum basins
|
| 地表监测 | 水体监测 | 大气监测 | 监测对象 | 土壤 (酸解烃、热释烃、顶空气) | 钻井顶空气 | 水体 (溶解态烃、游离态烃) | 水底沉积物 | 大气 (光谱特征) |
|
Direct monitoring methods of methane microseepage
|
12] ">
|
Surface physical, chemical and biological anomalies of methane microseepage[12]
|
地表异常 | 生物异常 | 矿物学化学特征异常 | 地球物理特征异常 | 监测对象 | 微生物 (数量和活性) | 植被 (光谱特征遥感) | 矿物 (光谱特征遥感) | 放射性 (伽马射线强度) | 磁性 |
|
Indirect monitoring methods of methane microseepage
|
3,20,37] ">
|
Geochemical analyses of natural gas[3,20,37]
|
数理分析 | 计算模型及公式 | 单变量异常阈值计算 | 符合多 重正态 分布 | l1= ,当Si-1≠Si,Ui-1<l1<Ui; l2=0.5(Ui+Ui-1)+ ln ,当Si-1=Si; 式中Ui为均值,Si为标准差,Ni为先验概率,l1为计算结果 | 不符合 正态分 布 | 多重分形模型:A(≥ρ)∝ρ-β; 式中A(≥ρ)代表等高线包围的区域(等高线值≥ρ),∝表示成正比,β为一个指数,对应于 数据范围等高线集假定的值 | 小波分析 (对数归一化) | Yi= ;式中Xi为初始数据,Yi为计算结果 | 多变量异常的综合参数 | 符合多 重正态 分布 | 密度分布函数Fi(X)=(2π)-m/2|Σi|-1/2exp[-0.5(X- ) (X- )]; 后验概率Pi= ;多变量异常识别综合参数Gi= ; 式中m为变量数, 为期望向量,Σi为协方差矩阵 | 不符合 正态分 布 | 逻辑乘法γj,k=2 ,j≠k; 式中Sj为关联的每个单变量的总体; 人工神经网络可以基于逻辑乘法聚类分析结果作为初始已知样本 |
|
Mathematical analyses and calculation methods of backgrounds and anomalies[38,39]
|
|
Flow chart of comprehensive exploration of methane microseepage for favorable oil-gas prospect areas
|
[1] |
Etiope G. The Earth’s hydrocarbon degassing [M]. Switzerland: Springer International Publishing, 2015.
|
[2] |
Sechman H, Kotarba M J, Kędzior S, et al. Fluctuations in methane and carbon dioxide concentrations in the near-surface zone and their genetic characterization in abandoned and active coal mines in the SW part of the Upper Silesian Coal Basin, Poland[J]. International Journal of Coal Geology, 2020,227:103529.
|
[3] |
Kotarba M J, Więcław D, Bilkiewicz E, et al. Origin, secondary processes and migration of oil and natural gas in the central part of the Polish Outer Carpathians[J]. Marine and Petroleum Geology, 2020,121:104617.
|
[4] |
Etiope G, Ehlmann B L, Schoell M. Low temperature production and exhalation of methane from serpentinized rocks on Earth: A potential analog for methane production on Mars[J]. Icarus, 2013,224(2):276-285.
|
[5] |
Etiope G, Schwietzke S. Global geological methane emissions: An update of top-down and bottom-up estimates[J]. Elementa-Science of the Anthropocene, 2019,47(7):1-9.
|
[6] |
许跃, 唐俊红, 王国建, 等. 含油气盆地地质甲烷释放研究综述[J]. 地质学报, 2016,90(3):553-558.
|
[6] |
Yu Y, Tang J H, Wang G J, et al. A comprehensive review of geologic methane emission in hydrocarbon-prone areas[J]. Acta Geological Sinica, 2016,90(3):553-558.
|
[7] |
唐俊红, 高忆平, 施明才, 等. 含油气盆地微渗漏甲烷运移机制研究进展[J]. 杭州电子科技大学学报:自然科学版, 2019,39(2):64-69.
|
[7] |
Tang J H, Gao Y P, Shi M C, et al. A preliminary review of gas migration mechanisms of methane microseepage in hydrocarbon-prone areas[J]. Journal of Hangzhou Dianzi University:Natural Sciences, 2019,39(2):64-69.
|
[8] |
Ciotoli G, Procesi M, Etiope G, et al. Influence of tectonics on global scale distribution of geological methane emissions[J]. Nature Communications, 2020,11(1):2305.
|
[9] |
王国建, 汤玉平, 唐俊红, 等. 断层对烃类微渗漏主控作用及异常分布影响的实验模拟研究[J]. 物探与化探, 2018,42(1):21-27.
|
[9] |
Wang G J, Tang Y P, Tang J H, et al. Experimental simulation of the effect of faults on vertical hydrocarbon microseepage[J]. Geophysical and Geochemical Exploration, 2018,42(1):21-27.
|
[10] |
王国建, 唐俊红, 汤玉平, 等. 油气藏上方地层中不同赋存态微渗漏轻烃特征初步模拟实验研究[J]. 石油实验地质, 2017,39(2):261-266.
|
[10] |
Wang G J, Tang J H, Tang Y P, et al. Simulation of microseepage of light hydrocarbon of different occurrence states in strata above reservoirs[J]. Petroleum Geology & Experiment, 2017,39(2):261-266.
|
[11] |
He J, Wang J, Milsch H, et al. The characteristics and formation mechanism of a regional fault in shale strata: Insights from the Middle-Upper Yangtze, China[J]. Marine and Petroleum Geology, 2020,121:104592.
|
[12] |
Asadzadeh S, de Souza Filho de Souza Filho. Spectral remote sensing for onshore seepage characterization: A critical overview[J]. Earth-Science Reviews, 2017,168:48-72.
|
[13] |
Allek K, Boubaya D, Bouguern A, et al. Spatial association analysis between hydrocarbon fields and sedimentary residual magnetic anomalies using Weights of Evidence: An example from the Triassic Province of Algeria[J]. Journal of Applied Geophysics, 2016,135:100-110.
|
[14] |
顾磊, 许科伟, 汤玉平, 等. 基于高通量测序技术研究页岩气区上方微生物多样性[J]. 石油实验地质, 2020,42(3):443-450,458.
|
[14] |
Gu L, Xu K W, Tang Y P, et al. Microbial diversity above a shale gas field using high-throughput sequencing[J]. Petroleum Geology & Experiment, 2020,42(3):443-450,458.
|
[15] |
Abrams M A. Significance of hydrocarbon seepage relative to petroleum generation and entrapment[J]. Marine and Petroleum Geology, 2005,22(4):457-477.
|
[16] |
Sobolev I S, Bredikhin N P, Bratec T, et al. Chemical diagenesis in near-surface zone above oil fields in geochemical exploration[J]. Applied Geochemistry, 2018,95:33-44.
|
[17] |
齐小平, 张友焱, 杨辉, 等. 柴达木盆地三湖地区天然气有利勘探区带(目标)遥感物化探综合分析与评价[J]. 中国石油勘探, 2012,17(5):17-26.
|
[17] |
Qi X P, Zhang Y Y, Yang H, et al. Analysis and evaluation of beneficial gas exploration zone based on remote sensing geophysical and geochemical methods in Sanhu area of Qaidam basin[J]. China Petroleum Exploration, 2012,17(5):17-26.
|
[18] |
王国建, 杨帆, 卢丽, 等. 采样季节对油气化探中游离烃方法的影响讨论[J]. 石油天然气学报, 2010,32(4):166-170,429.
|
[18] |
Wang G J, Yang F, Lu L, et al. Influence of sampling seasons on soil gas method in surface geochemical prospecting for oil and gas[J]. Journal of Oil and Gas Technology, 2010,32(4):166-170,429.
|
[19] |
Schumacher D Integrating hydrocarbon microseepage data with seismic data doubles exploration success[C]//Proceedings thirty-fourth annual conference and exhibition,Indonesian Petroleum Association, Indonesia, 2010.
|
[20] |
Milkov A V, Etiope G. Revised genetic diagrams for natural gases based on a global dataset of >20,000 samples[J]. Organic Geochemistry, 2018,125:109-120.
|
[21] |
Milkov A V. Worldwide distribution and significance of secondary microbial methane formed during petroleum biodegradation in conventional reservoirs[J]. Organic Geochemistry, 2011,42(2):184-207.
|
[22] |
赵静, 梁前勇, 张莉, 等. 基于酸解烃判别台湾海峡盆地西部坳陷含油气系统的油气藏属性[J]. 物探与化探, 2018,42(3):436-441.
|
[22] |
Zhao J, Liang Q Y, Zhang L, et al. Oil and gas reservoir attribute discrimination based on surface sediment acid-extraction hydrocarbon in the western depression of Taiwan Strait Basin[J]. Geophysical and Geochemical Exploration, 2018,42(3):436-441.
|
[23] |
Sechman H, Guzy P, Kaszuba P, et al. Direct and indirect surface geochemical methods in petroleum exploration: A case study from eastern part of the Polish Outer Carpathians[J]. International Journal of Earth Sciences, 2020,109(5):1853-1867.
|
[24] |
冯俊熙, 杨胜雄, 孙晓明, 等. 琼东南盆地甲烷微渗漏活动地球化学示踪研究[J]. 西南石油大学学报:自然科学版, 2018,40(3):63-75.
|
[24] |
Feng J X, Yang S X, Sun X M, et al. Geochemical tracers for methane microleakage activity in the Qiongdongnan basin[J]. Journal of Southwest Petroleum University:Science & Technology Edition, 2018,40(3):63-75.
|
[25] |
Hunt J M. Petroleum geochemistry and geology[M]. New York: Freeman and Co., 1996.
|
[26] |
杨金秀, 宋朋霖, 王红亮, 等. 琼东南盆地天然气水合物成藏模式及主控因素分析[J/OL]. 石油与天然气地质. 2019:1-17[2021-02-04]. http://kns.cnki.net/kcms/detail/11.4820.te.20191126.1454.004.html.
|
[26] |
Yang J X, Song P L, Wang H L, et al. Gas hydrate accumulation model and major controlling factors in Qiongdongnan Basin[J/OL]. Oil & Gas Geology, 2019:1-17[2021-02-04]. http://kns.cnki.net/kcms/detail/11.4820.te.20191126.1454.004.html.
|
[27] |
Klusman R W, Saaed M A. Comparison of light hydrocarbon microseepage mechanisms [G]//Schumacher D, Abrams M A. Hydrocarbon migration and its near-surface expression. Oklahoma:AAPG Memoir. 1996: 157-168.
|
[28] |
Abrams M A. Marine seepage variability and its impact on evaluating the surface migrated hydrocarbon seep signal[J]. Marine and Petroleum Geology, 2020,121:104600.
|
[29] |
Hirst B, Gibson G, Gillespie S, et al. Oil and gas prospecting by ultra-sensitive optical gas detection with inverse gas dispersion modelling[J]. Geophysical Research Letters, 2004,31(12):1-4.
|
[30] |
Zhou Q, Xu X, Xu H, et al. Surface microbial geochemistry of the Beihanzhuang Oilfield, northern Jiangsu, China[J]. Journal of Petroleum Science and Engineering, 2020,191:107140.
|
[31] |
汤玉平, 宁丽荣, 蒋涛, 等. 积雪油气化探方法试验研究[J]. 石油实验地质, 2009,31(3):287-291.
|
[31] |
Tang Y P, Ning L R, Jiang T, et al. Experimental research on the oil and gas geochemical exploration method of snow cover[J]. Petroleum Geology & Experiment, 2009,31(3):287-291.
|
[32] |
赵克斌, 陈银节, 孙长青. 油气化探异常的稳定性及油气地质意义[J]. 地质通报, 2009,28(11):1620-1627.
|
[32] |
Zhao K B, Chen Y J, Sun C Q. Stability and petroleum geological significance of hydrocarbon geochemical Anomaly[J]. Geological Bulletin of China, 2009,28(11):1620-1627.
|
[33] |
杨俊, 沈忠民, 王国建, 等. 油气化探异常双因素评价方法——以渤海湾盆地济阳坳陷临南—钱官屯地区为例[J]. 石油实验地质, 2018,40(2):295-302.
|
[33] |
Yang J, Shen Z M, Wang G J, et al. Double-factor evaluation for oil and gas geochemical anomalies: A case study of Linnan-Qianguantun areas, Jiyang Depression, Bohai Bay Basin[J]. Petroleum Geology & Experiment, 2018,40(2):295-302.
|
[34] |
Huang S, Chen S, Wang D, et al. Hydrocarbon micro-seepage detection from airborne hyper-spectral images by plant stress spectra based on the PROSPECT model[J]. International Journal of Applied Earth Observation and Geoinformation, 2019,74:180-190.
|
[35] |
Senouci M, Allek K. Application of Bayesian classifier to magnetic and gamma ray spectrometry data for targeting hydrocarbon microseepages[J]. Journal of Applied Geophysics, 2020,181:104145.
|
[36] |
Baciu C, Ionescu A, Etiope G. Hydrocarbon seeps in Romania: Gas origin and release to the atmosphere[J]. Marine and Petroleum Geology, 2018,89:130-143.
|
[37] |
Berner U, Faber E. Empirical carbon isotope/maturity relationships for gases from algal kerogens and terrigenous organic matter, based on dry, open-system pyrolysis[J]. Organic Geochemistry, 1996,24(10):947-955.
|
[38] |
Zhang L, Bai G, Zhao K, et al. Restudy of acid-extractable hydrocarbon data from surface geochemical survey in the Yimeng Uplift of the Ordos Basin, China: Improvement of geochemical prospecting for hydrocarbons[J]. Marine and Petroleum Geology, 2006,23(5):529-542.
|
[39] |
Zhang L, Bai G, Zhao Y. Data-processing and recognition of seepage and microseepage anomalies of acid-extractable hydrocarbons in the south slope of the Dongying depression, eastern China[J]. Marine and Petroleum Geology, 2014,57:385-402.
|
[40] |
荣发准, 陈昕华, 孙长青, 等. 近地表油气化探异常的确定与解释评价[J]. 物探与化探, 2013,37(2):212-217,24.
|
[40] |
Rong F Z, Chen X H, Sun C Q, et al. The determination and interpretation of near-surface geochemical oil-gas anomaly[J]. Geophysical and Geochemical Exploration, 2013,37(2):212-217,24.
|
[41] |
王珺璐, 贺永红, 王萌, 等. 层次分析和特征值分析相结合的物化探综合油气评价[J]. 物探与化探, 2015,39(4):762-767.
|
[41] |
Wang J L, He Y H, Wang M, et al. The comprehensive evaluation of oil and gas exploration combining hierarchy analysis and eigenvalue analysis[J]. Geophysical and Geochemical Exploration, 2015,39(4):762-767.
|
[42] |
孙忠军. 中国油气化探的成功案例[J]. 地质通报, 2009,28(11):1562-1571.
|
[42] |
Sun Z J. Case histories of hydrocarbon survey success in China[J]. Geological Bulletin of China, 2009,28(11):1562-1571.
|
[43] |
汤玉平, 赵克斌, 吴传芝, 等. 中国油气化探的近期进展和发展方向[J]. 地质通报, 2009,28(11):1614-1619.
|
[43] |
Tang Y P, Zhao K B, Wu C Z, et al. Recent advances and developing trend of hydrocarbon geochemical exploration in China[J]. Geological Bulletin of China, 2009,28(11):1614-1619.
|
[1] |
WANG Guo-Jian, LU Li, YANG Jun, LI Ji-Peng, REN Chun, TANG Jun-Hong, LI Wu. The soil gas method and its application to geochemical prospecting for oil and gas[J]. Geophysical and Geochemical Exploration, 2021, 45(1): 11-17. |
[2] |
GUO Jian-Hong, ZHANG Zhan-Song, ZHANG Chao-Mo, ZHOU Xue-Qing, XIAO Hang, QIN Rui-Bao, YU Jie. The exploration of predicting CBM content by geophysical logging data: A case study based on slope correlation random forest method[J]. Geophysical and Geochemical Exploration, 2021, 45(1): 18-28. |
|
|
|
|