|
|
Big data based studies of the variation features of Chinese soil’s background value versus reference value: A paper written on the occasion of Soil Geochemical Parameters of China’s publication |
XI Xiao-Huan1( ), HOU Qing-Ye2, YANG Zhong-Fang2, YE Jia-Yu3, YU Tao2, XIA Xue-Qi2, CHENG Hang-Xin4, ZHOU Guo-Hua4, YAO Lan3 |
1. China Geological Survey, Beijing 100037, China 2. School of Earth Science and Resources,China University of Geosciences(Beijing),Beijing 100083,China 3. Hubei Institute of Geological Experiments, Wuhan 430022,China 4. Institute of Geophysical & Geochemical Exploration,Chinese Academy of Geological Sciences,Langfang 065000,China |
|
|
Abstract The research on the soil’s geochemical background value and reference value is an important basic work in the field of geosciences. The publication of Soil Geochemical Parameters of China is an important result achieved on the basis of the China’s nation-wide multi-target regional geochemical survey and the high quality and precision big data studies. This paper outlines some basic requirements including the geochemical investigation method and the sample testing quality, and explains the acquisition means and accuracy level of the big data. We mainly discuss on a macro-scale the variation features of Chinese soil’s background value versus reference value, including:① to study the ratio feature between Chinese soil’s geochemical background value and the continental crust abundance of the world, and explain the overall characteristics and basic rules of Chinese soil element(oxide)background value versus the global continental crust abundance;② through comparing the soil element(oxide)background values of Liaohe river, yellow river, Yangzi river and Zujiang river catchment areas with the continental crust abundance, to study the variation features of soil element(oxide)background values of each large river catchment area from north China to south China versus the global continental crust abundance;③ through comparing the soil background value of the above mentioned large river catchment areas with Chinese nationwide soil background value, to study the soil background value’s variation features of each large river catchment area relative to Chinese nationwide overall soil background value;④ taking the soil background value of the “first environment”, which represents the natural background with almost no human influence, as the baseline, to study soil’s geochemical enrichment characteristicsof the “second environment” which is deeply influenced by human activities;⑤ through comparing the ratio features of “first environment” soil geochemical background versus “second environment” soil geochemical background of each large river catchment area and region in China, to study enrichment and depletion rules of the element index under different natural environment and geographic landscape of the whole China. The study of Soil Geochemical Parameters of China is on the basis of geochemical big data. With huge amount of information and very rich connotation, this study represents China’s high quality and accuracy, and is an unprecedented academic achievement and milestone in China’s geochemical research history. This study will provide basic information for many scientific fields including the pedology, ecology, environment science and biology; provide important basis for the research of major scientific subjects such as global change, global environment and global governance; and provide evaluation criteria for the scientific management and decision-making of China’s natural resources, ecological & environmental protection, agricultural & rural development and health sectors. Only by exploring some problems on a macro-scale in this paper, we have found many ecological information, natural rules and scientific questions which need us to make in-depth research and application practice. It is predictable that along with the in-depth research and extensive application of Chinese soil’s geochemical parameters, the geochemical research will be further involved into China’s economic and social development, make positive contributions to our country, and geochemical problems will be more concerned by China’s economic and social development sectors.The result of this investigation and research project is a concentration of many geo-scientists’ hard work and wisdom, shows us these geoscientists’ rigorous scientific spirit and respectable dedication and responsibility, demonstrates China’s high quality and accuracy, and represents the high quality geo-scientific advancement of China.
|
Received: 30 March 2021
Published: 15 December 2021
|
|
|
|
|
分析方法 | 配套方案1 | 项数 | 配套方案2 | 项数 | 配套方案3 | 项数 | 电感耦合等离子体质谱法 (ICP-MS) | Li、Be、Sc、Co、Ga、Ge、Cd、Tl、U、Pb、Th、Cu、Zn、La、Ce | 15 | Bi、Cd、Ge、Mo、Th、Tl、U、W | 8 | Be、Co、Li、Mo、Th、Tl、U、W、Cd、Ni、Bi(四酸溶样,直接测定);I、Ge、B、Sn(样品过氧化钠熔融后,阳离子树脂静态分离测定) | 15 | 等离子体发射光谱 (ICP-OES) | Ba、Mn、Sr、V、CaO、MgO、Na2O、Ni | 8 | Ce、Be、Sc、La、Li、Co、Ni | 7 | Cu、Sc、MgO、CaO、Na2O、Ce、La、Mn | 8 | X射线荧光光谱法(XRF) | SiO2、Al2O3、TFe2O3、K2O、Br、Cr、Cl、Nb、P、Rb、Ti、Y、Zr、S | 14 | SiO2、Al2O3、Cr、Ga、K2O、Nb、P、Pb、V、Rb、Ti、Y、Zr、Cl、Br、Cu、Ba、TFe2O3、CaO、Mn、Sr、Zn、MgO、Na2O | 24 | K2O、Al2O3、SiO2、TFe2O3、Ba、Br、Cl、Ga、Nb、Rb、P、Pb、Sr、Ti、Y、Zn、Zr、V、Cr | 19 | 原子荧光光谱(AFS) | As、Sb、Bi、Hg、Se | 5 | As、Sb、Hg、Se | 4 | As、Sb、Hg、Se | 4 | 交流电弧—发射光谱法(ES) | Ag、B、Sn | 3 | Ag、B、Sn | 3 | Ag | 1 | 催化极谱(POL) | Mo、W | 2 | | | | | 离子选择电极(ISE) | F | 1 | F | 1 | F | 1 | 泡塑吸附分离质谱法(ICP-MS) | Au | 1 | Au | 1 | Au | 1 | 石墨炉原子吸收法(AAS) | | | | | Au | 1 | 燃烧—碘量法(VOL) | | | S | 1 | S | 1 | 高频红外碳硫仪(HFI) | TC | 1 | | | TC | 1 | 容量法(VOL) | Corg、N | 2 | Corg、TC、N | 3 | Corg、N | 2 | pH计电极法(ISE) | pH | 1 | pH | 1 | pH | 1 | 催化比色法(COL) | I | 1 | I | 1 | | | 合计 | | 54 | | 54 | | 54 |
|
Matching scheme for analytical methods
|
指标 | 分析方法检出限 | 分析方法精密度RSD/% | 分析方法准确度 /% | 分析方法准确度($\overline {ΔlgC}$) | Ag | 0.02 | 3.82 | 1.65 | 0.01 | As | 0.069 | 2.68 | 9.92 | 0.05 | Au | 0.0003 | 0.64 | 1.40 | 0.006 | B | 1.0 | 12.2 | 1.9 | 0.02 | Ba | 10 | 4.49 | 2.80 | 0.014 | Be | 0.2 | 1.77 | 4.68 | 0.023 | Bi | 0.042 | 2.86 | 5.74 | 0.03 | Br | 0.8 | 6.78 | 5.0 | 0.082 | Cd | 0.05 | 6.12 | 3.38 | 0.01 | Ce | 1.0 | 3.5 | 2.3 | 0.025 | Cl | 6.9 | 5.0 | 3.1 | 0.063 | Co | 1.0 | 1.49 | 8.99 | 0.044 | Cr | 3.0 | 3.70 | 10.47 | 0.052 | Cu | 1.0 | 2.51 | 5.16 | 0.026 | F | 20 | 18.2 | 5.1 | 0.038 | Ga | 2.0 | 2.2 | 3.0 | 0.04 | Ge | 0.02 | 2.72 | 3.51 | 0.02 | Hg | 0.0005 | 2.18 | 2.11 | 0.01 | I | 0.30 | 0.50 | 3.30 | 0.02 | La | 1.0 | 3.11 | 4.14 | 0.020 | Li | 0.5 | 1.77 | 4.48 | 0.022 | Mn | 5.0 | 1.62 | 4.19 | 0.021 | Mo | 0.2 | 6.48 | 2.65 | 0.013 | N | 0.002 | 3.1 | 2.3 | 0.02 | Nb | 1.0 | 2.1 | 2.8 | 0.018 | Ni | 1.0 | 1.56 | 4.57 | 0.023 | P | 20 | 2.0 | 1.9 | 0.009 | Pb | 2.0 | 1.8 | 3.2 | 0.03 | Rb | 1.0 | 4.2 | 8.4 | 0.06 | S | 6.5 | 6.4 | 7.5 | 0.078 | Sb | 0.028 | 2.59 | 7.11 | 0.04 | Sc | 0.2 | 3.2 | 4.5 | 0.05 | Se | 0.0057 | 3.27 | 11.5 | 0.06 | Sn | 0.6 | 9.1 | 2.0 | 0.03 | Sr | 3.0 | 2.17 | 3.85 | 0.019 | Th | 4.0 | 4.2 | 3.6 | 0.06 | Ti | 30 | 0.8 | 1.8 | 0.025 | Tl | 0.2 | 7.8 | 2.5 | 0.08 | U | 0.05 | 6.7 | 3.1 | 0.012 | V | 5.0 | 1.61 | 3.59 | 0.018 | W | 0.3 | 5.95 | 0.62 | 0.003 | Y | 1.0 | 2.4 | 1.6 | 0.014 | Zn | 5.0 | 1.85 | 4.21 | 0.021 | Zr | 1.0 | 2.3 | 5.4 | 0.036 | SiO2 | 100 | 0.8 | 2.3 | 0.018 | Al2O3 | 100 | 0.11 | 9.3 | 0.048 | TFe2O3 | 0.0030 | 1.28 | 5.60 | 0.028 | MgO | 0.0029 | 1.55 | 4.65 | 0.023 | CaO | 0.0052 | 1.20 | 4.22 | 0.021 | Na2O | 0.045 | 5.65 | 4.14 | 0.020 | K2O | 100 | 3.3 | 2.4 | 0.01 | TC | 0.080 | 1.60 | 4.44 | 0.02 | SOC | 0.068 | 2.45 | 3.84 | 0.019 | pH | 0.10 | | | |
|
Detection limit, accuracy and precision of the analytical method used for each element
|
含量范围 | 准确度 | 精密度 | $\overline {ΔlgC}$(GBW)=|lg -lgCs| | RSD%(GBW)= | 检出限3倍以内 | ≤0.1 | 17 | 检出限3倍以上 | ≤0.05 | 10 | >1% | ≤0.04 | 8 |
|
Accuracy and precision requirements of the analytical method
|
含量范围 | 准确度 | 精密度 | $\overline {ΔlgC}$(GBW)=|lg -lgCs| | λ= | 检出限3倍以内 | ≤0.12 | 0.17 | 检出限3倍以上 | ≤0.10 | 0.15 | 1~5% | ≤0.07 | 0.10 | >5% | ≤0.05 | 0.08 |
|
Accuracy and precision requirements of routine analysis
|
|
Areas covered by multi-target regional geochemical survey in China(1999~2012)
|
指标 | 含量 单位 | 土壤第一环境 | 土壤第二环境 | 原始数据 (n=95588) | 剔除异常值数据 (n=95471~77535) | 原始数据 (n=376743) | 剔除异常值数据 (n=375854~312184) | | | 平均值 | 标准差 | 变异系数 | 平均值 | 标准差 | 变异系数 | 平均值 | 标准差 | 变异系数 | 平均值 | 标准差 | 变异系数 | Ag | 10-9 | 250 | 3713 | 14.8 | 66 | 17 | 0.3 | 297 | 4216 | 14.2 | 74 | 20 | 0.3 | As | 10-6 | 10.8 | 12.9 | 1.2 | 9.5 | 3.9 | 0.4 | 10.3 | 14.5 | 1.4 | 9.1 | 3.7 | 0.4 | Au | 10-9 | 1.7 | 2.5 | 1.5 | 1.5 | 0.5 | 0.4 | 2.0 | 7.0 | 3.5 | 1.6 | 0.6 | 0.4 | B | 10-6 | 50 | 26 | 0.5 | 48 | 19 | 0.4 | 51 | 29 | 0.6 | 48 | 20 | 0.4 | Ba | 10-6 | 518 | 196 | 0.4 | 512 | 113 | 0.2 | 510 | 253 | 0.5 | 504 | 117 | 0.2 | Be | 10-6 | 2.2 | 0.8 | 0.4 | 2.1 | 0.5 | 0.2 | 2.1 | 0.8 | 0.4 | 2.0 | 0.4 | 0.2 | Bi | 10-6 | 0.40 | 1.60 | 4.0 | 0.29 | 0.10 | 0.3 | 0.46 | 1.92 | 4.2 | 0.33 | 0.11 | 0.3 | Br | 10-6 | 2.9 | 3.7 | 1.3 | 2.3 | 1.0 | 0.5 | 4.5 | 5.9 | 1.3 | 3.3 | 1.5 | 0.5 | Cd | 10-9 | 127 | 308 | 2.4 | 96 | 40 | 0.4 | 205 | 613 | 3.0 | 150 | 68 | 0.5 | Ce | 10-6 | 75 | 25 | 0.3 | 71 | 16 | 0.2 | 75 | 43 | 0.6 | 72 | 16 | 0.2 | Cl | 10-6 | 233 | 1022 | 4.4 | 63 | 27 | 0.4 | 317 | 1611 | 5.1 | 72 | 26 | 0.4 | Co | 10-6 | 13.4 | 8.4 | 0.6 | 12.4 | 4.5 | 0.4 | 12.2 | 6.4 | 0.5 | 11.7 | 4.3 | 0.4 | Cr | 10-6 | 68 | 39 | 0.6 | 65 | 21 | 0.3 | 66 | 46 | 0.7 | 63 | 22 | 0.3 | Cu | 10-6 | 24 | 17 | 0.7 | 22 | 8 | 0.4 | 25 | 32 | 1.3 | 23 | 9 | 0.4 | F | 10-6 | 534 | 267 | 0.5 | 512 | 137 | 0.3 | 521 | 325 | 0.6 | 501 | 147 | 0.3 | Ga | 10-6 | 17.2 | 4.2 | 0.2 | 16.9 | 3.4 | 0.2 | 16.3 | 3.8 | 0.2 | 16.1 | 3.1 | 0.2 | Ge | 10-6 | 1.4 | 0.3 | 0.2 | 1.4 | 0.2 | 0.2 | 1.4 | 0.2 | 0.2 | 1.4 | 0.2 | 0.1 | Hg | 10-9 | 46 | 385 | 8.3 | 28 | 18 | 0.6 | 76 | 466 | 6.1 | 50 | 31 | 0.6 | I | 10-6 | 2.5 | 2.4 | 0.9 | 2.0 | 1.1 | 0.6 | 2.4 | 2.5 | 1.1 | 1.8 | 0.8 | 0.5 | La | 10-6 | 38 | 13 | 0.3 | 37 | 8 | 0.2 | 38 | 22 | 0.6 | 37 | 7 | 0.2 | Li | 10-6 | 36 | 16 | 0.4 | 35 | 11 | 0.3 | 34 | 15 | 0.4 | 33 | 11 | 0.3 | Mn | 10-6 | 650 | 384 | 0.6 | 605 | 230 | 0.4 | 580 | 308 | 0.5 | 552 | 206 | 0.4 | Mo | 10-6 | 0.89 | 1.19 | 1.3 | 0.68 | 0.27 | 0.4 | 0.86 | 2.00 | 2.3 | 0.67 | 0.26 | 0.4 | N | 10-6 | 489 | 291 | 0.6 | 444 | 176 | 0.4 | 1172 | 591 | 0.5 | 1117 | 450 | 0.4 | Nb | 10-6 | 16 | 6 | 0.4 | 16 | 4 | 0.2 | 16 | 7 | 0.4 | 15 | 4 | 0.2 | Ni | 10-6 | 29 | 22 | 0.8 | 28 | 10 | 0.4 | 27 | 20 | 0.7 | 26 | 10 | 0.4 | P | 10-6 | 479 | 276 | 0.6 | 460 | 177 | 0.4 | 707 | 359 | 0.5 | 686 | 256 | 0.4 | Pb | 10-6 | 27 | 39 | 1.4 | 23 | 5 | 0.2 | 30 | 90 | 3.0 | 25 | 7 | 0.3 | Rb | 10-6 | 109 | 37 | 0.3 | 103 | 19 | 0.2 | 104 | 37 | 0.4 | 99 | 18 | 0.2 | S | 10-6 | 233 | 668 | 2.9 | 129 | 58 | 0.5 | 353 | 746 | 2.1 | 259 | 104 | 0.4 | Sb | 10-6 | 0.94 | 1.60 | 1.7 | 0.76 | 0.30 | 0.4 | 1.02 | 2.15 | 2.1 | 0.80 | 0.31 | 0.4 | Sc | 10-6 | 11.2 | 3.6 | 0.3 | 11.1 | 3.0 | 0.3 | 10.7 | 3.5 | 0.3 | 10.5 | 2.9 | 0.3 | Se | 10-6 | 0.17 | 0.19 | 1.1 | 0.13 | 0.07 | 0.5 | 0.26 | 0.22 | 0.8 | 0.22 | 0.09 | 0.4 | Sn | 10-6 | 3.6 | 3.9 | 1.1 | 3.0 | 0.8 | 0.3 | 4.3 | 8.7 | 2.0 | 3.2 | 0.9 | 0.3 | Sr | 10-6 | 157 | 108 | 0.7 | 152 | 83 | 0.5 | 154 | 110 | 0.7 | 148 | 79 | 0.5 | Th | 10-6 | 13.5 | 6.9 | 0.5 | 12.3 | 3.2 | 0.3 | 12.9 | 6.1 | 0.5 | 11.9 | 3.0 | 0.3 | Ti | 10-6 | 4458 | 2069 | 0.5 | 4240 | 1068 | 0.3 | 4419 | 2191 | 0.5 | 4193 | 1044 | 0.2 | Tl | 10-6 | 0.7 | 0.3 | 0.4 | 0.6 | 0.1 | 0.2 | 0.6 | 0.3 | 0.4 | 0.6 | 0.1 | 0.2 | U | 10-6 | 2.8 | 1.6 | 0.6 | 2.4 | 0.7 | 0.3 | 2.8 | 15.1 | 5.4 | 2.4 | 0.7 | 0.3 | V | 10-6 | 87 | 37 | 0.4 | 83 | 24 | 0.3 | 84 | 36 | 0.4 | 79 | 24 | 0.3 | W | 10-6 | 2.12 | 3.08 | 1.5 | 1.78 | 0.55 | 0.3 | 2.18 | 7.45 | 3.4 | 1.77 | 0.55 | 0.3 | Y | 10-6 | 25.6 | 8.1 | 0.3 | 25.0 | 5.0 | 0.2 | 25.4 | 7.0 | 0.3 | 24.9 | 5.0 | 0.2 | Zn | 10-6 | 67 | 34 | 0.5 | 64 | 20 | 0.3 | 71 | 49 | 0.7 | 67 | 23 | 0.3 | Zr | 10-6 | 261 | 68 | 0.3 | 257 | 55 | 0.2 | 276 | 85 | 0.3 | 269 | 63 | 0.2 | SiO2 | % | 63.88 | 6.65 | 0.1 | 63.94 | 6.03 | 0.1 | 64.96 | 7.52 | 0.1 | 64.96 | 7.01 | 0.1 | Al2O3 | % | 13.98 | 3.15 | 0.2 | 13.62 | 2.31 | 0.2 | 13.14 | 2.65 | 0.2 | 12.96 | 1.96 | 0.2 | TFe2O3 | % | 4.79 | 1.81 | 0.4 | 4.64 | 1.35 | 0.3 | 4.49 | 1.72 | 0.4 | 4.35 | 1.28 | 0.3 | MgO | % | 1.52 | 0.76 | 0.5 | 1.50 | 0.71 | 0.5 | 1.48 | 0.80 | 0.5 | 1.46 | 0.75 | 0.5 | CaO | % | 2.99 | 2.97 | 1.0 | 2.90 | 2.76 | 0.9 | 2.85 | 2.75 | 1.0 | 2.79 | 2.58 | 0.9 | Na2O | % | 1.28 | 0.76 | 0.6 | 1.28 | 0.75 | 0.6 | 1.28 | 0.77 | 0.6 | 1.27 | 0.75 | 0.6 | K2O | % | 2.41 | 0.58 | 0.2 | 2.40 | 0.42 | 0.2 | 2.36 | 0.63 | 0.3 | 2.36 | 0.44 | 0.2 | TC | % | 0.90 | 0.72 | 0.8 | 0.84 | 0.55 | 0.6 | 1.63 | 0.85 | 0.5 | 1.54 | 0.58 | 0.4 | SOC | % | 0.37 | 0.33 | 0.9 | 0.31 | 0.16 | 0.5 | 1.15 | 0.71 | 0.6 | 1.07 | 0.49 | 0.5 | pH(中位数) | 8.03 | | | 8.04 | | | 7.67 | | | 7.67 | | |
|
Geochemical background value of soil in China
|
指标 | 中国第一环境土壤地球化学算术均值 /上地壳丰度 | 中国第二环境土壤地球化学算术均值 /上地壳丰度 | 上地壳丰度[13] | 原始数据 | 剔除异常值 | 原始数据 | 剔除异常值 | Ag | 4.72 | 1.25 | 5.60 | 1.40 | 53 | As | 2.25 | 1.98 | 2.15 | 1.90 | 4.8 | Au | 1.13 | 1.00 | 1.33 | 1.07 | 1.5 | B | 2.94 | 2.82 | 3.00 | 2.82 | 17 | Ba | 0.83 | 0.82 | 0.82 | 0.81 | 624 | Be | 1.05 | 1.00 | 1.00 | 0.95 | 2.1 | Bi | 2.50 | 1.81 | 2.88 | 2.06 | 0.16 | Cd | 1.41 | 1.07 | 2.28 | 1.67 | 0.09 | Co | 0.77 | 0.72 | 0.71 | 0.68 | 17.3 | Cr | 0.74 | 0.71 | 0.72 | 0.68 | 92 | Cu | 0.86 | 0.79 | 0.89 | 0.82 | 28 | F | 0.96 | 0.92 | 0.94 | 0.90 | 557 | Hg | 0.92 | 0.56 | 1.52 | 1.00 | 50 | La | 1.23 | 1.19 | 1.23 | 1.19 | 31 | Li | 1.71 | 1.67 | 1.62 | 1.57 | 21 | Mn | 0.85 | 0.79 | 0.76 | 0.73 | 761.19 | Mo | 0.81 | 0.62 | 0.78 | 0.61 | 1.1 | Nb | 1.33 | 1.33 | 1.33 | 1.25 | 12 | Ni | 0.62 | 0.60 | 0.57 | 0.55 | 47 | P | 0.73 | 0.70 | 1.08 | 1.05 | 654.93 | Pb | 1.59 | 1.35 | 1.76 | 1.47 | 17 | Sb | 2.35 | 1.90 | 2.55 | 2.00 | 0.4 | Sn | 1.71 | 1.43 | 2.05 | 1.52 | 2.1 | Sr | 0.49 | 0.48 | 0.48 | 0.46 | 320 | Th | 1.29 | 1.17 | 1.23 | 1.13 | 10.5 | Ti | 1.16 | 1.10 | 1.15 | 1.09 | 3840 | U | 1.04 | 0.89 | 1.04 | 0.89 | 2.7 | V | 0.90 | 0.86 | 0.87 | 0.81 | 97 | W | 1.12 | 0.94 | 1.15 | 0.93 | 1.9 | Y | 1.22 | 1.19 | 1.21 | 1.19 | 21 | Zn | 1.00 | 0.96 | 1.06 | 1.00 | 67 | Zr | 1.35 | 1.33 | 1.43 | 1.39 | 193 | SiO2 | 0.96 | 0.96 | 0.98 | 0.98 | 66.62 | Al2O3 | 0.91 | 0.88 | 0.85 | 0.84 | 15.4 | TFe2O3 | 0.86 | 0.83 | 0.80 | 0.78 | 5.6 | MgO | 0.61 | 0.60 | 0.60 | 0.59 | 2.48 | CaO | 0.83 | 0.81 | 0.79 | 0.78 | 3.59 | Na2O | 0.39 | 0.39 | 0.39 | 0.39 | 3.27 | K2O | 0.86 | 0.86 | 0.84 | 0.84 | 2.8 |
|
Ratio between Chinese soil’s geochemical background value and the continental crust abundance
|
|
Features of the ratio between each large river catchments soil background value relative to upper crust abundance and whole Chinas soil background value
|
原始数据 | 原始数据剔除异常值 | 指标 | 比值 | 指标 | 比值 | 指标 | 比值 | 指标 | 比值 | 指标 | 比值 | 指标 | 比值 | Ag | 1.19 | I | 0.95 | Ti | 0.99 | Ag | 1.12 | I | 0.92 | Ti | 0.99 | As | 0.96 | La | 1.00 | Tl | 0.96 | As | 0.96 | La | 1.00 | Tl | 0.97 | Au | 1.18 | Li | 0.95 | U | 1.00 | Au | 1.07 | Li | 0.95 | U | 1.00 | B | 1.02 | Mn | 0.89 | V | 0.96 | B | 1.01 | Mn | 0.91 | V | 0.96 | Ba | 0.99 | Mo | 0.96 | W | 1.03 | Ba | 0.98 | Mo | 0.99 | W | 1.00 | Be | 0.95 | N | 2.39 | Y | 0.99 | Be | 0.96 | N | 2.52 | Y | 1.00 | Bi | 1.16 | Nb | 1.00 | Zn | 1.06 | Bi | 1.12 | Nb | 0.99 | Zn | 1.05 | Br | 1.54 | Ni | 0.95 | Zr | 1.06 | Br | 1.46 | Ni | 0.95 | Zr | 1.05 | Cd | 1.61 | P | 1.48 | SiO2 | 1.02 | Cd | 1.56 | P | 1.49 | SiO2 | 1.02 | Ce | 1.00 | Pb | 1.12 | Al2O3 | 0.94 | Ce | 1.00 | Pb | 1.11 | Al2O3 | 0.95 | Cl | 1.36 | Rb | 0.96 | TFe2O3 | 0.94 | Cl | 1.14 | Rb | 0.96 | TFe2O3 | 0.94 | Co | 0.91 | S | 1.52 | MgO | 0.97 | Co | 0.95 | S | 2.02 | MgO | 0.97 | Cr | 0.98 | Sb | 1.08 | CaO | 0.95 | Cr | 0.97 | Sb | 1.05 | CaO | 0.96 | Cu | 1.05 | Sc | 0.95 | Na2O | 1.00 | Cu | 1.04 | Sc | 0.95 | Na2O | 0.99 | F | 0.98 | Se | 1.55 | K2O | 0.98 | F | 0.98 | Se | 1.78 | K2O | 0.98 | Ga | 0.95 | Sn | 1.19 | TC | 1.81 | Ga | 0.95 | Sn | 1.08 | TC | 1.83 | Ge | 0.98 | Sr | 0.98 | SOC | 3.07 | Ge | 0.98 | Sr | 0.98 | SOC | 3.48 | Hg | 1.65 | Th | 0.96 | pH | 0.95 | Hg | 1.77 | Th | 0.97 | pH | 0.95 |
|
Ratio features of soil background value in environment II versus that in environment I (reference value) of China
|
地区 | 显著富集 (≥1.2) | 富集 (1.10~1.20) | 稳定 (0.90~1.10) | 贫化 (0.80~0.90) | 显著贫化 (<0.80) | 全国 | TC、SOC、Br、Cd、Cl、 Hg、N、P、S、Se | Sn、Ag、Au、 Bi、Pb | As、B、Ba、Be、Ce、Co、Cr、Cu、 F、Ga、Ge、I、Li、La、Mo、Nb、 Ni、Rb、Sb、Sc、Sr、Th、Ti、Tl、 U、V、W、Y、Zn、Zr、SiO2、 Al2O3、TFe2O3、MgO、CaO、 Na2O、K2O、pH | | | 黑龙江流域 | TC、SOC、Br、Cd、Cl、 Hg、N、P、 S、Se | I | SiO2、Al2O3、TFe2O3、MgO、 CaO、Na2O、K2O、Ag、As、Au、 Ba、Be、Bi、Ce、Co、Cr、Cu、F、 Ga、Ge、La、Li、Mn、Nb、Ni、 Pb、Rb、Sb、Sc、Sn、Sr、Th、Ti、 Tl、U、V、W、Y、Zn、Zr | B、Mo | | 辽河流域 | TC、SOC、Bi、Br、Cd、 Cl、Hg、N、P、S、Se | Ag、Au、Mo、 Pb、Sn、Zn | SiO2、Al2O3、TFe2O3、MgO、 CaO、Na2O、K2O、As、B、Ba、 Be、Ce、Co、Cr、Cu、F、Ga、Ge、 I、La、Li、Mn、Nb、Ni、Rb、Sb、 Sc、Sr、Th、Ti、Tl、U、V、W、Y、 Zr | | | 黄河流域 | TC、SOC、Br、Cd、 Cl、Hg、N、P、Se | Ag、Au、Bi、Cu、Pb、S | SiO2、Al2O3、TFe2O3、MgO、 CaO、Na2O、K2O、As、B、Ba、 Be、Ce、Cr、F、Ga、Ge、I、La、 Li、Mn、Mo、Nb、Ni、Rb、Sb、 Sc、Sn、Sr、Th、Ti、Tl、U、V、W、 Y、Zn、Zr | Co | | 淮河流域 | TC、SOC、Br、Cd、 Hg、N、S、Se、P | Bi、Sn | SiO2、Al2O3、TFe2O3、MgO、 CaO、Na2O、K2O、Ag、As、Au、 B、Ba、Be、Ce、Cl、Co、Cr、Cu、 F、Ga、Ge、I、La、Li、Mo、Nb、 Ni、Pb、Rb、Sb、Sc、Sr、Th、Ti、 Tl、Y、U、V、W、Zn、Zr | Mn | | 长江流域 | TC、SOC、Au、Bi、Br、 Cd、Cl、Hg、N、P、Pb、 S、Sb、Se、Sn | Ag | SiO2、Al2O3、MgO、CaO、 Na2O、K2O、As、B、Ba、Be、Ce、 Co、Cr、Cu、F、Ga、Ge、La、Li、 Mo、Nb、Ni、Rb、Sc、Sr、Th、Ti、 Tl、U、V、W、Y、Zn、Zr | TFe2O3 | I、Mn | 珠江流域 | SOC、TC、Ag、Au、Br、 Cd、Hg、N、P、S | Zr | SiO2、CaO、Na2O、B、Ba、Bi、 Ce、Cl、Cu、F、La、Mn、Nb、Pb、 Sb、Se、Sn、Sr、Ti、U、W、Y、Zn | Al2O3、TFe2O3、MgO、 K2O、As、Be、Co、Cr、 Ga、Ge、I、Li、Mo、Ni、 Rb、Sc、Th、Tl、V | | 广西 | CaO、TC、SOC、Ag、 Cd、Cl、N、P、S | SiO2、Br、Zr | Na2O、Au、B、Ce、La、Se、Sn、 Sr、Ti、Y、W | Ba、Bi、Cr、Cu、F、Ge、 Hg、 Mn、Nb、Pb、Sb、 Th、Tl、U | Al2O3、TFe2O3、MgO、 K2O、As、Be、Co、Ga、I、 Li、Mo、Ni、Rb、Sc、V、Zn | 海南岛 | TC、SOC、Au、Br、Cl、 Cd、I、Hg、N、P、Se、Zr | Ag、Mn | SiO2、CaO、Na2O、K2O、As、B、 Bi、Co、Cr、Ge、Nb、Sb、Sn、Sr、 Ti、V、W | TFe2O3、MgO、Ba、Cu、 Ga、Mo、Ni、Pb、Rb、Tl、 Th、U、Zn | Al2O3、Be、Ce、F、La、 Li、S、Sc、Y |
|
Ratio features of environment II soil background value versus environment I soil background value (reference value) of whole China and each main catchment area
|
[1] |
侯青叶, 杨忠芳, 余涛, 等. 中国土壤地球化学参数[M]. 北京: 地质出版社, 2020.
|
[1] |
Hou Q Y, Yang Z F, Yu T, et al. Soil geochemical parameters in China[M]. Beijing: Geological Publishing House, 2020.
|
[2] |
黎彤, 饶纪龙. 地球和地壳的化学元素丰度[J]. 地质学报, 1965, 45(1):82-92,131-135.
|
[2] |
Li T, Rao J L. The abundance of chemical elements in the earth and the crust[J]. Acta Geologica Sinica, 1965, 45(1):82-92,131-135.
|
[3] |
黎彤, 倪守斌. 论化学元素在地壳及基本构造单元中的丰度[M]. 北京: 科学出版社, 1990.
|
[3] |
Li T, Ni S B. On the abundance of chemical elements in the crust and basic structural units[M]. Beijing: Science Press, 1990.
|
[4] |
鄢明才, 迟清华. 中国东部地壳与岩石的化学组成[M]. 北京: 科学出版社, 1997.
|
[4] |
Yan M C, Chi Q H. The chemical composition of the crust and rocks in eastern China[M]. Beijing: Science Press, 1997.
|
[5] |
龚子同, 陈鸿昭, 赵文君, 等. 土壤地球化学的进展和应用[M]. 北京: 科学出版社, 1985.
|
[5] |
Gong Z T, Chen H Z, Zhao W J, et al. Progress and application of soil geochemistry[M]. Beijing: Science Press, 1985.
|
[6] |
Z/T 0258—2014 多目标区域地球化调查规范(1∶250000)[S]. 北京: 中国标准出版社, 2015.
|
[6] |
Z/T 0258—2014 Multi-target regional geochemical survey specifications(1∶250000)[S]. Beijing: China Standard Press, 2015.
|
[7] |
奚小环. 大数据科学从信息化、模式化到智能化:现代地球化学应用研究的新范式[J]. 地学前缘, 2021, 28(1):308-317.
|
[7] |
Xi X H. Big data science from informationization to modelling to intelligentization: New paradigm of applied geochemical research[J]. Earth Science Frontiers, 2021, 28(1):308-317.
|
[8] |
叶家瑜, 张蕾. 多目标地球化学勘查样品分析方法配套方案[J]. 地质通报, 2006, 25(6):741-744.
|
[8] |
Ye J Y, Zhang L. Combination schemes of sample analysis methods for multitarget geochemical survey[J]. Geological Bulletin of China, 2006, 25(6):741-744.
|
[9] |
张勤. 多目标地球化学填图中的54种指标配套分析方案和分析质量监控系统[J]. 第四纪研究, 2005, 25(3):292-297.
|
[9] |
Zhang Q. A complete set of analytical schemes and analytical data monitoring systems for determinations of 54 components in multi-purpose geochemical mapping[J]. Quaternary Sciences, 2005, 25(3):292-297.
|
[10] |
叶家瑜, 江保林. 区域地球化学勘查样品分析方法[M]. 北京: 地质出版社, 2004.
|
[10] |
Ye J Y, Jiang B L. Analysis methods of regional geochemical exploration samples[M]. Beijing: Geological Publishing House, 2004.
|
[11] |
姚岚, 叶家瑜. 区域地球化学调查样品分析质量控制方法探讨[J]. 岩矿测试, 2004, 23(2):137-142.
|
[11] |
Yao L, Ye J Y. Discussion of Quality control method for the analysis of samples in regional geochemical survey[J]. Rock and Mineral Analysis, 2004, 23(2):137-142.
|
[12] |
DD 2005—03 生态地球化学评价样品分析技术要求(试行)[S]. 中国地质调查局技术标准, 2005.
|
[12] |
DD 2005—03 Technical requirements for the analysis of ecological geochemical evaluation samples (for trial implementation)[S]. Technical Standards of China Geological Survey, 2005.
|
[13] |
Rudnick R L, Gao S. The composition of the continental crust[G]//Holland H D,Turekian K K.Treatise on geochemistry. Oxford: Elsevier-Pergamon, 2003:1-64.
|
[14] |
夏学齐, 杨忠芳, 余涛, 等. 中国土壤碳密度系列参数 [M]. 北京: 地质出版社, 2018.
|
[14] |
Xia X Q, Yang Z F, Yu T, et al. China soil carbon density series parameters[M]. Beijing: Geological Publishing House, 2018.
|
|
|
|