|
|
The application of audio frequency magnetotelluric method to the geothermal exploration: A case study of Huangniqiao area, Ninghua County, Fujian Province |
WANG Jia-Long( ), DI Bing-Ye( ), ZHANG Bao-Song, ZHAO Dong-Dong |
Nanjing Center,China Geological Survey,Nanjing 210016,China |
|
|
Abstract In order to find out the occurrence status of geothermal resources in Huangniqiao area, Ninghua County, Sanming City, Fujian Province, the authors carried out geothermal exploration work in this area by using the audio frequency magnetotelluric method (AMT). Based on the analysis of the characteristics of layer structure and lithology in the work area, the fault structure distribution in the area was inferred and, according to the fault distribution characteristics, one optimized geothermal abnormal target area was delineated. Drilling shows that the well bore water-bearing formation is in good agreement with the low resistivity anomaly of AMT two-dimensional inversion. On the basis of verification, the spatial distribution model of faults in the area was constructed, and four potential fault type thermal storage areas were inferred according to AMT inversion results and fault distribution characteristics. The overall research results show that AMT method is feasible and effective for geothermal resource exploration, which can provide important reference value for the deployment of geothermal exploration in similar areas in the future.
|
Received: 14 June 2020
Published: 27 July 2021
|
|
Corresponding Authors:
DI Bing-Ye
E-mail: 710636168@qq.com;44464453@qq.com
|
|
|
|
11] ">
|
Geological map and AMT survey line distribution of the Huangniqiao area[11]
|
地层或岩体 | 岩性 | 标本数 | 电阻率/(Ω·m) | 几何平均值/(Ω·m) | 备注 | 第四系(Q) | 黏土 | 10 | 30~920 | 318 | 地表小四极测定法 | 岩体 | 花岗岩 | 32 | 4 102~105 014 | 16 289.43 | 岩心测定 |
|
Statistical table of electrical parameters of rocks in Huangniqiao area
|
|
Three-dimensional profile of AMT line in study area by two-dimensional nonlinear conjugate gradient inversion
|
地层或岩体 | 井段/m | 厚度/m | 侧向电阻率/(Ω·m) | 备注 | 第四系(Q) | 0~5.75 | 5.75 | 10.90~21.21 | 黏土和强风化层 | 岩体 | 246.90~248.70 | 1.80 | 124.47~292.56 | 含水破碎带 | 岩体 | 253.30~253.68 | 0.38 | 204.94~350.51 | 含水破碎带 | 岩体 | 256.92~259.55 | 2.63 | 118.06~170.03 | 含水破碎带 | 岩体 | 260.10~376.38 | 116.28 | 447.15~8 330.79 | 花岗岩、辉绿岩 | 岩体 | 474.50~475.98 | 1.48 | 219.77~430.49 | 含水破碎带 |
|
The apparent resistivity logging results of Well DR01[20]
|
|
Comparison diagram of drilling verification of line 106
|
|
Comprehensive geological inference and interpretation results in Huangniqiao area
|
[1] |
徐世光, 郭远生. 地热学基础[M]. 北京: 科学出版社, 2009.
|
[1] |
Xu S G, Guo Y S. Fundamentals of geothermal science [M]. Beijing: Science Press, 2009.
|
[2] |
武斌, 曹俊兴, 邹俊, 等. 音频大地电磁测深法在康定小热水地热勘查研究中应用[J]. 物探化探计算技术, 2011, 33(5):507-510.
|
[2] |
Wu B, Cao J X, Zou J, et al. Application of audio frequency magnetotelluric sounding method in the study of geothermal exploration of small hot water in Kangding[J]. Geophysical and Geochemical Exploration Calculation Technology, 2011, 33(5):507-510.
|
[3] |
曹永安, 姜海灏. 综合物探方法在鞍山市某地热田外围地热勘查中的应用[J]. 地质找矿论丛, 2013, 28(1):153-157.
|
[3] |
Cao Y A, Jiang H H. The application of comprehensive geophysical method in the geothermal exploration of the periphery of a geothermal field in Anshan City[J]. Geological Prospecting Cluster, 2013, 28(1):153-157.
|
[4] |
孙海川, 刘永亮, 邵程龙. 综合物探在海石湾地区地热勘查中的应用[J]. 物探化探计算技术, 2019, 43(2):290-297.
|
[4] |
Sun H C, Liu Y L, Shao C L. Application of comprehensive geophysical exploration to geothermal exploration in Haishiwan area[J]. Geophysical and Geochemical Exploration Calculation Technology, 2019, 43(2):290-297.
|
[5] |
赵宝峰, 汪启年, 官大维. 带状热储地热田的地球物理场特征——以湖南省热水圩地热田为例[J]. 物探与化探, 2019, 43(4):734-740.
|
[5] |
Zhao B F, Wang Q N, Guan D W. Geophysical field characteristics of zonal thermal storage geothermal field:A case study of hot water Wei geothermal field in Hunan Province[J]. Geophysical and Geochemical Exploration, 2019, 43(4):734-740.
|
[6] |
徐新学, 夏训银, 刘俊昌, 等. MT及CSAMT方法在城市地热资源勘探中的应用[J]. 桂林工学院学报, 2004, 24(3):278-281.
|
[6] |
Xu X X, Xia X Y, Liu J C, et al. Application of MT and CSAMT methods in urban geothermal resources exploration[J]. Journal of Guilin Institute of Technology, 2004, 24(3):278-281.
|
[7] |
叶益信, 邓居智, 方根显. 高频大地电磁测深(EH-4) 在热储构造勘查中的试验研究——以抚州地热区为例[J]. 地质与勘探, 2011, 47(4):649-653.
|
[7] |
Ye Y X, Deng J Z, Fang G X. Experimental study of high frequency magnetotelluric sounding (EH-4) in the exploration of thermal reservoir structure — Taking Fuzhou geothermal area as an example[J]. Geology and Exploration, 2011, 47(4):649-653.
|
[8] |
汪琪, 赵志鹏, 尹秉喜, 等. 电磁测深MT法在平原深部地热调查中的应用[J]. 工程地球物理学报, 2016, 13(6):782-787.
|
[8] |
Wang Q, Zhao Z P, Yin B X, et al. Application of MT method of electromagnetic sounding in deep geothermal survey of plain[J]. Journal of Engineering Geophysics, 2016, 13(6):782-787.
|
[9] |
王佳龙, 张宝松, 陈基炜, 等. 大地电磁测深不同反演方法的应用效果对比——以安徽皖江地区页岩气调查为例[J]. 华东地质, 2020, 41(1):79-87.
|
[9] |
Wang J L, Zhang B S, Chen J W, et al. Comparison of application effects of different inversion methods of magnetotelluric sounding — a case study of shale gas survey in Anhui Wanjiang area[J]. Geology of East China, 2020, 41(1):79-87.
|
[10] |
陈乐寿. 大地电磁测深—探测地球深部电性和物质状态的一种有效手段[J]. 科技进展, 2009, 31(1):39-46.
|
[10] |
Chen L S. Magnetotelluric sounding:An effective means to detect the electrical properties and physical state of the deep earth[J]. Scientific and Technological Progress, 2009, 31(1):39-46.
|
[11] |
林昭丽, 张火亮. 三明市宁化县城南乡黄泥桥地热异常区调查报告[R]. 三明:福建省闽西地质大队资源环境调查研究院, 2016.
|
[11] |
Lin Z L, Zhang H L. Investigation report of huangniqiao geothermal anomaly area, Nanxiang, Ninghua County,Sanming City [R]. Sanming:resource and environment investigation and Research Institute of Minxi Geological Brigade, Fujian Province, 2016.
|
[12] |
周珍琦, 陈润生, 夏春金, 等. 福建省(含台湾)矿产资源潜力评价[R].福州:福建省地质调查研究院[R]. 福州:福建省地质调查研究院, 2013.
|
[12] |
Zhou Z Q, Chen R S, Xia C J, et al. Mineral resource potential evaluation of Fujian Province (including Taiwan)[R]. Fuzhou:Fujian Geological Survey Institute, 2013.
|
[13] |
刘瑞德, 黄力军, 孟银生. 可控源音频大地电磁测深法在地热田勘查中应用效果初探[J]. 工程地球物理学报, 2007, 4(2):86-89.
|
[13] |
Liu R D, Huang L J, Meng Y S. Application effect of controlled source audio frequency magnetotelluric sounding in geothermal field exploration[J]. Journal of Engineering Geophysics, 2007, 4(2):86-89.
|
[14] |
汪集旸, 熊亮萍, 庞忠和. 中低温对流型地热系统 [M]. 北京: 科学出版社, 1993.
|
[14] |
Wang J Y, Xiong L P, Pang Z H. Medium low temperature convective geothermal system [M]. Beijing: Science Press, 1993.
|
[15] |
王斌, 李百祥, 李福城. 物探成果在探讨青海鄂拉山活动断裂带控热控震的分段差异性中的应用[J]. 物探与化探, 2015, 39(2):311-317.
|
[15] |
Wang B, Li B X, Li F C. The application of geophysical exploration results in the study of the segmented difference of thermal and seismic control in the Elashan active fault zone, Qinghai[J]. Geophysical and Geochemical Exploration, 2015, 39(2):311-317.
|
[16] |
卫万顺, 李宁波, 冉伟彦, 等. 中国浅层地热能资源[M]. 北京: 中国大地出版社, 2010.
|
[16] |
Wei W S, Li N B, Ran W Y, et al. Shallow geothermal energy resources in China [M]. Beijing: China Earth Press, 2010.
|
[17] |
陈小斌, 叶涛, 蔡军涛, 等. 大地电磁资料精细处理和二维反演解释技术研究(七)——云南盈江—龙陵地震区深部电性结构及孕震环境[J]. 地球物理学报, 2019, 62(4):1377-1393.
|
[17] |
Chen X B, Ye T, Cai J T, et al. Research on fine processing of magnetotelluric data and two-dimensional inversion and interpretation technology (7)—deep electrical structure and seismogenic environment in Yingjiang Longling seismic area, Yunnan[J]. Journal of Geophysics, 2019, 62(4):1377-1393.
|
[18] |
熊彬, 罗天涯, 蔡红柱, 等. 起伏地形大地电磁二维反演[J]. 物探与化探, 2016, 40(3):587-593.
|
[18] |
Xiong B, Luo T Y, Cai H Z, et al. Two dimensional magnetotelluric inversion of rolling terrain[J]. Geophysical and Geochemical Exploration, 2016, 40(3):587-593.
|
[19] |
朱培民, 王家映. 共轭梯度法[J]. 工程地球物理学报, 2008, 5(4):382-386.
|
[19] |
Zhu P M, Wang J Y. Conjugate gradient method[J]. Journal of Engineering Geophysics, 2008, 5(4):382-386.
|
[20] |
刘复焜, 肖晔, 陈奎, 等. 长汀—宁化地区地热钻探钻孔综合测井报告[R]. 龙岩:福建省121地质大队, 2020.
|
[20] |
Liu F K, Xiao Y, Chen K, et al. Comprehensive logging report of geothermal drilling in Changting Ninghua area[R]. Longyan:Fujian 121 Geological Brigade, 2020.
|
|
|
|