|
|
Exploration and analysis of geophysical methods in curtain grouting water control |
WEI Hai-Min1( ), LI Xing1, SUN Bang-Tao2, ZHOU Sheng3, NIU Jie1 |
1. Yunnan Metallurgical Resources Co., Ltd., Kunming 650051 , China 2. Yunnan Chihong Zn & Ge Co., Ltd., Qujing 655011, China 3. Hunan 5D Geological Technology Co., Ltd., Changsha 410205, China |
|
|
Abstract Taking the Maoping mining area of Yilang in Yunnan Province as an example, the authors used the opposing coils transient electromagnetic method (OCTEM) and the audio-frequency magnetotelluric (AMT) method to detect the development of water-bearing fault zone within 700 m below the axis of curtain grouting project, with the intention to provide guidance for curtain grouting water control project. Through the comprehensive analysis of geophysical exploration, 7 anomalies with water-rich were delineated. The results show that OCTEM method can identify small water-bearing joints or cracks, AMT method is more sensitive to large-depth water-bearing fracture zone, and the combination of the two has obvious effect on the detection of bad water-bearing geological bodies. It can be seen that the application effect of integrated geophysical exploration in curtain grouting water control is good, the deep extension of water-bearing channel is effectively identified, and the target area is provided for curtain grouting water control.
|
Received: 30 March 2020
Published: 01 March 2021
|
|
|
|
|
地层及代号 | 主要岩性 | 第四系(Q) | 砂砾石、黏土 | 二叠系上统峨眉山玄武岩组(P3β) | 玄武岩 | 二叠系下统栖霞—茅口组(P1q+m) | 灰岩、白云岩 | 二叠系下统梁山组(P1l) | 砂页岩、凝灰岩、灰质角砾岩 | 石炭系威宁组(C2w) | 灰岩、白云岩、页岩 | 石炭系丰宁组(C1f) | 灰岩、炭质页岩、石英砂岩 | 泥盆系上统宰格组(D3zg) | 白云岩、页岩、灰岩 |
|
Surface exposed strata and main lithology of the mining area
|
|
The formation,structure and location of geophysical survey line in the mining area
|
岩性 | 电阻率/(Ω·m) | 范围 | 平均值 | 白云岩 | 11073~652 | 3137 | 灰质白云岩 | 3766~481 | 1706 | 炭质白云岩 | 1759~78 | 606 | 玄武岩 | 2716~867 | 1379 | 炭质页岩 | 773~210 | 426 | 砂岩 | 1543~429 | 603 | 灰岩 | 8454~1183 | 3326 | 注浆水泥结实体 | 87~27 | 50 |
|
Statistics of physical parameters of rockspecimens in mining area
|
|
Sketch map of OCTEM
|
|
Flow chart of OCTEM data processing
|
|
Geophysical inversion and comprehensive anomaly analysis of 906 roadway vertical line
|
|
Geophysical inversion and comprehensive anomaly analysis of 906 roadway axis line
|
[1] |
葛燕燕, 傅雪海, 舍建忠, 等. 煤层气井排采时地下水响应瞬变电磁法探测研究[J]. 煤炭科学技术, 2014,42(12):98-101.
|
[1] |
Ge Y Y, Fu X H, She J Z, et al. Research of transient electromagnetic method detection on groundwater response during coalbed methane well drainage[J]. Coal Science and Technology, 2014,42(12):98-101.
|
[2] |
刘文波, 李磊涛. 瞬变电磁法在荒漠地区地下水探测中的应用[J]. 金属矿山, 2012(9):96-98.
|
[2] |
Liu W B, Li L T. Application of underground water sounding using transient electromagnetic method in desert zone[J]. Metal Mine, 2012(9):96-98.
|
[3] |
徐坤, 李小庆, 常钰斌, 等. AMT和MT联合探测技术在地下水勘查中的应用[J]. 工程地球物理学报, 2018,15(3):391-396.
|
[3] |
Xu K, Li X Q, Chang Y B, et al. The application of joint detection technology of AMT and MT to exploration of groundwater[J]. Chinese Journal of Engineering Geophysics, 2018,15(3):391-396.
|
[4] |
张文秀, 周逢道, 林君, 等. 分布式电磁探测系统在深部地下水资源勘查中的应用[J]. 吉林大学学报:地球科学版, 2012,42(4):1207-1213.
|
[4] |
Zhang W X, Zhou F D, Lin J, et al. Application of distributed electromagnetic system in deep groundwater prospecting[J]. Journal of Jilin University:Earth Science Edition, 2012,42(4):1207-1213.
|
[5] |
何国丽, 王光杰, 周超, 等. 音频大地电磁法在探测地下水中的应用——以湛江南木水为例[J]. 地球物理学进展, 2019,34(1):304-309.
|
[5] |
He G L, Wang G J, Zhou C, et al. Application of audio-frequency magnetotelluric (AMT) in groundwater exploration:A case of the Nanmushui area in Zhanjiang[J]. Progress in Geophysics, 2019,34(1):304-309.
|
[6] |
底青云, 石昆法, 王妙月, 等. CSAMT法和高密度电法探测地下水资源[J]. 地球物理学进展, 2001,16(3):53-57,127.
|
[6] |
Di Q Y, Shi K F, Wang M Y, et al. Water resources exploration with CSAMT and high density electric resistivity method[J]. Progress in Geophysics, 2001,16(3):53-57,127.
|
[7] |
马吉静. 高密度电阻率法的异常识别和推断——以溶洞探测和寻找地下水为例[J]. 地球物理学进展, 2019,34(4):1489-1498.
|
[7] |
Ma J J. Anomaly identification and inference of high density resistivity method:Take karst cave exploration and groundwater exploration as an example[J]. Progress in Geophysics, 2019,34(4):1489-1498.
|
[8] |
胡少伟, 陆俊, 王国群. 地质雷达在探测地下富含水区域中的应用[J]. 水利水运工程学报, 2012(6):33-37.
|
[8] |
Hu S W, Lu J, Wang G Q. Application analysis of detecting water-rich areas with ground-penetrating radar[J]. Hydro-Science and Engineering, 2012(6):33-37.
|
[9] |
蒋川东, 林君, 段清明, 等. 二维阵列线圈核磁共振地下水探测理论研究[J]. 地球物理学报, 2011,54(11):2973-2983.
|
[9] |
Jiang C D, Lin J, Duan Q M, et al. A study on 2D magnetic resonance sounding with an array loop for groundwater exploration[J]. Chinese Journal of Geophysics, 2011,54(11):2973-2983.
|
[10] |
王晓明, 崔伟, 聂栋刚. 地面核磁共振地下水探测技术在水库大坝渗漏勘查中的应用[J]. 物探与化探, 2015,39(2):432-436.
|
[10] |
Wang X M, Cui W, Nie D G. The application of the SNMR groundwater detection technology to the detection of reservoir dam leakage[J]. Geophysical and Geochemical Exploration, 2015,39(2):432-436.
|
[11] |
刘福臣, 王启田, 程兴奇. 激发极化法探测泰山群变质岩地下水[J]. 水文地质工程地质, 2008(5):72-75.
|
[11] |
Liu F C, Wang Q T, Cheng X Q. Groundwater detection in metamorphic rock of Taishan group with applying induced polarization method[J]. Hydro-Science and Engineering, 2008(5):72-75.
|
[12] |
龙凡, 韩天成. 激电法在地下水探测中的应用效果[J]. 物探与化探, 2002,26(6):422-424,432.
|
[12] |
Long F, Han T C. The application of IP method to groundwater exploration[J]. Geophysical and Geochemical Exploration, 2002,26(6):422-424,432.
|
[13] |
高远. 等值反磁通瞬变电磁法对石膏矿采空区的探测分析[J]. 物探与化探, 2019,43(6):1404-1408.
|
[13] |
Gao Y. The application effect on detecting goaf of gypsum mine by opposing coils transient electromagnetics method[J]. Geophysical and Geochemical Exploration, 2019,43(6):1404-1408.
|
[14] |
席振铢, 龙霞, 周胜, 等. 基于等值反磁通原理的浅层瞬变电磁法[J]. 地球物理学报, 2016,59(9):3428-3435.
|
[14] |
Xi Z Z, Long X, Zhou S, et al. Opposing coils transient electromagnetic method for shallow subsurface detection[J]. Chinese Journal of Geophysics, 2016,59(9):3428-3435.
|
[15] |
严小丽, 康慧敏, 王光杰, 等. AMT方法在鳌山卫花岗岩地区深部地热构造勘探中的应用[J]. 地球物理学进展, 2019,34(5):1945-1953.
|
[15] |
Yan X L, Kang H M, Wang G J, et al. Application of AMT in deep geothermal structure exploration in Aoshanwei granite area of Qingdao[J]. Progress in Geophysics, 2019,34(5):1945-1953.
|
[16] |
柳建新, 童孝忠, 郭荣文, 等. 大地电磁测深法勘探——资料处理、反演与解释[M]. 北京: 科学出版社, 2012.
|
[16] |
Liu J X, Tong X Z, Guo R W, et al. Exploration by magnetotelluric sounding—data processing,inversion and interpretation[M]. Beijing: Science Press, 2012.
|
[17] |
许建荣. 起伏地形条件下大地电磁测深二维正反演研究及应用[D]. 长沙:中南大学, 2010.
|
[17] |
Xu J R. Research and applications of 2D MT forward modeling and inversion with topography[D]. Changsha:Central South University, 2010.
|
[18] |
周汝峰, 王绪本, 秦策, 等. 大地电磁NLCG 与 OCCAM 二维反演的综合利用[J]. 地球物理学进展, 2016,31(5):2306-2312.
|
[18] |
Zhou R F, Wang X B, Qin C, et al. Comprehensive utilization of NLCG and OCCAM in two-dimensional magnetotelluric inversion[J]. Progress in Geophysics, 2016,31(5):2306-2312.
|
[1] |
REN Xi-Rong, LI Xin, ZHOU Zhi-Jie. Application of the opposing coils transient electromagnetic method in investigation of mined-out areas of a gold deposit[J]. Geophysical and Geochemical Exploration, 2023, 47(2): 540-546. |
[2] |
WANG Jun-Cheng, ZHAO Zhen-Guo, GAO Shi-Yin, LUO Chuan-Gen, LI Lin, XU Ming-Zuan, LI Yong, YUAN Guo-Jing. Application of a comprehensive geophysical exploration methods in the exploration of geothermal resources in Yueliangwan, Binhai County[J]. Geophysical and Geochemical Exploration, 2023, 47(2): 321-330. |
|
|
|
|