|
|
Test analysis of multi-channel transient surface wave data acquisition in loess plateau |
Wen TANG1,2, Jiang LI3, Tie-Wang WANG4 |
1. School of Earth Sciences and Engineering,Xi'an Shiyou University,Xi'an 710065,China 2. Shaanxi Key Laboratory of Petroleum Accumulation Geology,Xi'an Shiyou University,Xi'an 710065,China 3. Xi'an Research Institute of China Coal Science and Industry Group Co. Ltd.,Xi'an 710077,China 4. Changqing Branch of Geophysical Research Institute,BGP,Xi'an 710021,China |
|
|
Abstract In order to apply the method of multi-channel analysis surface wave (MASW) to geological survey,the authors studied multi-channel transient surface wave data acquisition in loess plateau.The effect of some acquisition parameters,such as different excitation sources,number of receiving channels,station intervals and the minimum offset,on the record quality of the data was analyzed.In addition,the suitable data acquisition method and parameters for the loess plateau were pointed out.The processing results of the actual data reflect the velocity structure and the loess type characteristics in the near surface of the work area,which indicates that the selection method of the data acquisition parameters is reasonable,which lays a foundation for the application of MASW in the geological survey in the loess plateau area.
|
Received: 10 April 2019
Published: 03 March 2020
|
|
|
|
|
|
Schematic diagram of multi-channel transient surface wave geometry
|
|
Process flow of multi-channel transient surface wave data
|
|
Seismic recording of different sources
|
|
Comparison of dispersion curve of seismic recording of different sources
|
|
Comparison of different hammering stacking folds (1~4 stacking folds from left to right)
|
|
Comparison of dispersion curve with different receiving channels
|
|
Dispersion curve characteristics with different offsets
|
|
Shallow lithology and outcrop in the work area
|
|
Processed profiles of surface wave
|
[1] |
李万伦, 田黔宁, 刘素芳 , 等. 城市浅层地震勘探技术进展[J]. 物探与化探, 2018,42(4):653-661.
|
[1] |
Li W L, Tian Q N, Liu S F , et al. Progress in the study of shallow seismic exploration technology in urban areas[J]. Geophysiacl and Geochemical Exploration, 2018,42(4):653-661.
|
[2] |
夏江海, 高玲利, 潘雨迪 , 等. 高频面波方法的若干新进展[J]. 地球物理学报, 2015,58(8):2591-2605.
|
[2] |
Xia J H, Gao L L, Pan Y D , et al. New findings in high-frequency surface wave method.[J]. Chinese Journal of Geophysics, 2015,58(8):2591-2605.
|
[3] |
韩晓萌, 岳英民 . 多道瞬态面波法在某高压线路工程地层划分中的应用[J]. 地下水, 2016,38(6):85-86.
|
[3] |
Han X M, Yue Y M . Application of multichannel transient surface wave method in stratigraphic division of a high pressure line engineering[J]. Groundwater, 2016,38(6):85-86.
|
[4] |
贾辉, 陈义军, 张辉 , 等. 多道瞬态面波在回填地基调查中的应用[J]. 物探与化探, 2012,36(5):884-886.
|
[4] |
Jia H, Chen Y J, Zhang H , et al. The application of MASW to backfilling foundation investigation[J]. Geophysical and Geochemical Exploration, 2012,36(5):884-886.
|
[5] |
张维, 何正勤, 胡刚 , 等. 用面波联合勘探技术探测浅部速度结构[J]. 地球物理学进展, 2013,28(4):2199-2206.
|
[5] |
Zhang W, He Z Q, Hu G , et al. Detection of the shallow velocity structure with surface wave prospection method[J]. Progress in Geophysics, 2013,28(4):2199-2206.
|
[6] |
贾辉, 何正勤, 陈义军 , 等. 多道瞬态瑞利波法场地数据采集参数实验[J]. 物探与化探, 2010,34(4):553-556.
|
[6] |
Jia H, He Z Q, Chen Y J , et al. Tests on field data acquisition parameters in MASW[J]. Geophysical and Geochemical Exploration, 2010,34(4):553-556.
|
[7] |
安好收, 罗传根 . 浅层纵横波联合勘探在活动断层探测中的应用[J]. 物探与化探, 2019,43(3):543-550.
|
[7] |
An H S, Luo C G . The application of combined exploration of shallow P-wave and S-wave to active fault detection[J]. Geophysical and Geochemical Exploration, 2019,43(3):543-550.
|
[8] |
王文忠, 孙海川, 刘永亮 . 黄土塬LA勘探区煤田地震勘探采集技术[J]. 物探与化探, 2018,42(4):689-696.
|
[8] |
Wang W Z, Sun H C, Liu Y L . A study on coalfield seismic exploration parameter selection in LA exploration of loess tabeland[J]. Geophysiacl and Geochemical Exploration, 2018,42(4):689-696.
|
[9] |
林承灏, 张平松, 郭立全 , 等. 利用多道面波勘探技术调查路基岩溶地质条件[J]. 工程地球物理学报, 2012,9(5):595-599.
|
[9] |
Lin C H, Zhang P S, Guo L Q , et al. Investigation of Subgrade Karst geological condition using multi-channel transient surface wave exploration technology[J]. Chinese Journal of Engineering Geophysics, 2012,9(5):595-599.
|
[10] |
李学军 . 瞬态瑞雷波探测技术及其应用研究[J]. 石油地球物理勘探, 1998,33(3):100-110.
|
[10] |
Li X J . Ruileibo detection technology and its application[J]. Oil Geophysical Prospecting, 1998,33(3):100-110.
|
[11] |
丰赟, 沙椿 . 面波联合勘探在深厚覆盖层地区应用实例分析[J]. 物探与化探, 2018,42(2):392-397.
|
[11] |
Feng Y, Sha C . Combined use of active and passive surface waves in the deep overburden area[J]. Geophysical and Geochemical Exploration, 2018,42(2):392-397.
|
[12] |
刘庆华, 鲁来玉, 王凯明 . 主动源和被动源面波浅勘方法综述[J]. 地球物理学进展, 2015,30(6):2906-2922.
|
[12] |
Liu Q H, Lu L Y, Wang K M . Review on the active and passive surface wave exploration method for the near-surface structure[J]. Progress in Geophysics, 2015,30(6):2906-2922.
|
[13] |
赵东 . 被动源面波勘探方法与应用[J]. 物探与化探, 2010,34(6):759-764.
|
[13] |
Zhao D . Passive surface waves:methods and applications[J]. Geophysical and Geochemical Exploration, 2010,34(6):759-764.
|
[14] |
尹晓菲, 胥鸿睿, 夏江海 , 等. 一种基于层析成像技术提高浅地表面波勘探水平分辨率的方法[J]. 地球物理学报, 2018,61(6):2380-2395.
|
[14] |
Yin X F, Xu H R, Xia J H , et al. A travel-time tomography method for improving horizontal resolution of high-frequency surface-wave exploration[J]. Chinese Journal of Geophysics, 2018,61(6):2380-2395.
|
[15] |
Paik C B, Miller R D, Xia J H . Multi-channel analysis of surface wave[J]. Geophysics, 1999,64(3):800-808.
|
[16] |
Zhang S X, Chan L S, Xia J H . The selection of field acquisition parameter for dispersion images from multi-channel surface data[J]. Pure and Applied Geophysics, 2004,161(1):185-201.
|
[17] |
刘康, 戴靠山, 徐强 , 等. 埋入源多道面波分析(MASW)中最小偏移距的估计方法[J]. 地球物理学报, 2018,61(6):2421-2432.
|
[17] |
Liu K, Dai K S, Xu Q , et al. Nearest offset design for multichannel analysis of surface waves (MASW) method with buried source excitations[J]. Chinese Journal of Geophysics, 2018,61(6):2421-2432.
|
[18] |
苏传行, 刘争平, 谭屹 , 等. 二维起伏地形瑞利面波速度频散特性数值模拟[J]. 地球物理学进展, 2019,34(2):810-816.
|
[18] |
Su C H, Liu Z P, Tan Y , et al. Study to the dispersion characteristics of Rayleigh waves trvalling along topographies with numerical modeling[J]. Progress in Geophysics, 2019,34(2):810-816.
|
[19] |
伍敦仕, 孙成禹, 林美言 . 基于互相关相移的主动源地震面波频散成像方法[J]. 地球物理学进展, 2017,32(4):1693-1700.
|
[19] |
Wu D S, Sun C Y, Lin M Y . Active seismic surface wave dispersion imaging method based on cross-correlation and phase-shifting[J]. Progress in Geophysics, 2017,32(4):1693-1700.
|
[20] |
于东凯, 宋先海, 江东威 , 等. 改进蜂群算法及其在面波频散曲线反演中的应用[J]. 地球物理学报, 2018,61(4):1482-1495.
|
[20] |
Yu D K, Song X H, Jiang D W , et al. Improvement of artificial Bee Colony and its application in Rayleigh wave inversion[J]. Chinese Journal of Geophysics, 2018,61(4):1482-1495.
|
[1] |
LI Qiao-Ling, ZHANG Hui, LEI Xiao-Dong, LI Chen, FANG Hao, GUAN Wei, HAN Yu-Da, ZHAO Xu-Chen. Analyses of internal structure of slopes using multi-channel transient surface wave exploration and microtremor survey[J]. Geophysical and Geochemical Exploration, 2022, 46(1): 258-267. |
[2] |
XIE Xing-Long, MA Xue-Mei, LONG Hui, LI Qiu-Chen, GUO Shu-Jun, CHENG Zheng-Pu. The parameter selection of middle and shallow seismic exploration based on vibrator[J]. Geophysical and Geochemical Exploration, 2021, 45(4): 1004-1013. |
|
|
|
|