|
|
Geomagnetic gradient exploration and its test in metal deposits: a case study of the Layikeleke copper-iron deposit |
Hao WANG1,2, Jia-Yong YAN1,2( ), Gui-Xiang MENG1,2, Qing-Tian LU1,2, Xv WANG1,2,3 |
1. Chinese Academy of Geological Sciences, Beijing 100037, China 2. China Deep Exploration Center,China Geological Survey & Chinese Academy of Geological Sciences, Beijing 100037, China 3. School of Geophysics and Information Technology, China University of Geosciences, Beijing 100083, China |
|
|
Abstract With the progress in the study of ultra-high sensitivity and high precision magnetometers, magnetic gradient measurement has become possible, and is currently widely used in the field of engineering geophysical explorations such as non-explosives detection. In order to understand the difference between the measured magnetic gradient and the calculated magnetic gradient and its application effect on the metal ore, the authors carried out a 1∶5 000 magnetic gradient measurement test in the Laikluck copper-iron deposit in East Junggar, Xinjiang, The authors compared the difference and similarity between the measured magnetic gradient and the calculated magnetic gradient. It is found that the macroscopic trend of the measured magnetic gradient and the calculated magnetic gradient are basically the same, but there are differences in the anomaly details; when the point distance and the line spacing are not equal, the calculation of the magnetic gradient line is effective. In a certain direction, the magnetic anomaly has a tendency of lengthening along the direction of the line; the difference between the calculated gradient and the measured gradient in different intensity anomalies is the largest, especially the vertical gradient. The measured magnetic gradient has a relatively obvious detection advantage for burial shallow anomalous geological bodies, and can obtain more geological body information. For low-relief anomalies, the distance between the probes is limited due to the topographical conditions, and the magnetic anomalies are weak. Combined with the analysis of the exploration results of the Laikluck magnetite, it is considered that the measured magnetic gradient is sensitive to local anomaly detection, and the surrounding rocks are magnetic deposit such as volcanic rock. The geomagnetic gradient measurement is beneficial to delineating the magnetic boundary. The two-dimensional and three-dimensional vector of the measured magnetic gradient can also distinguish the nature of the anomaly and provide an indication for the prospecting prediction.
|
Received: 18 March 2019
Published: 28 November 2019
|
|
Corresponding Authors:
Jia-Yong YAN
E-mail: yanjy@163.com
|
|
|
|
21] Q—Quaternary; D2b1—First lithologic member of Middle Devonian; D2b2—Second lithologic member of Middle Devonian; —Middle Devonian andesite; —Middle Devonian basalt; D1t—Tuorangekuduke formation of Lower Devonian System; —Hercynian monzonitic granite; γ —Hercynian granite porphyry; δ —Hercynian quartz diorite; γ —early Hercynian granodiorite; γ —Caledonian tonalite; βμ—diabase dikes ">
|
Geological map of the Layikeleke ore district, Eastern Junggar[21] Q—Quaternary; D2b1—First lithologic member of Middle Devonian; D2b2—Second lithologic member of Middle Devonian; —Middle Devonian andesite; —Middle Devonian basalt; D1t—Tuorangekuduke formation of Lower Devonian System; —Hercynian monzonitic granite; γ —Hercynian granite porphyry; δ —Hercynian quartz diorite; γ —early Hercynian granodiorite; γ —Caledonian tonalite; βμ—diabase dikes
|
|
G858 Cs optical-pumping magnetomete (a), base station magnetometer(b)
|
|
Comparison of magnetic gradient and calculated magnetic gradient in Layikeleke copper iron ore a—east-west horizontal magnetic gradient calculated from the total field;b—east-west measured magnetic gradient;c—calculate the difference between the east-west magnetic gradient minus the measured magnetic gradient;d—the north-south horizontal magnetic gradient calculated from the total field;e—the north-south direction measured magnetic gradient;f—the north-south direction to calculate the magnetic gradient minus measuring the difference in magnetic gradient;g—the vertical gradient calculated from the total field;h—the vertical measured magnetic gradient;i—calculating the difference between the magnetic gradient minus the measured magnetic gradient in the vertical direction;ZK—drillings
|
|
Measuring the gradient analysis signal (a) and the analytical signal obtained by calculating the gradient (b)
|
|
Magnetic gradient 2D vector diagram (the base map is a contour map of the polarization magnetic anomaly)
|
|
Magnetic gradient 3D vector diagram(the base map is a contour map of the polarization magnetic anomaly)
|
|
Horizontal projection of ore body speculated based on gradient vector (The base map is a contour map of the polarization magnetic anomaly,the black polygon is the projection of the horizontal boundary of the magnetite body on the surface)
|
[1] |
潘琦, 刘得军, 程星 , 等. 磁力梯度测量技术的新发展[J]. 地球物理学进展, 2018,33(6):2568-2574.
|
[1] |
Pan Q, Liu D J, Cheng X , et al. New development of magnetic gradient measurement technique[J]. Progress in Geophysics, 2018,33(6):2568-2574.
|
[2] |
Schmidt P W, Clark D A . Advantages of measuring the magnetic gradient tensor[J]. Aust. Soc. Explor. Geophys., 2000,85(8):2630.
|
[3] |
张敬东 . 未爆炸弹的磁梯度探测方法[J]. 探测与控制学报, 2016,38(3):98-103,108.
|
[3] |
Zhang J D . Magnetic gradient detection of unexploded ordnance[J]. Journal of Detection & Control, 2016,38(3):98-103,108.
|
[4] |
周帅, 黄大年, 王泰涵 . 利用磁法数据的解析信号探测未爆炸弹(UXO)[J]. 地球物理学进展, 2016,31(4):1767-1770.
|
[4] |
Zhou S, Huang D N, Wang T H . Detecting unexplored ordnance (UXO) using magnetic data analytical signals[J]. Progress in Geophysics, 2016,31(4):1767-1770.
|
[5] |
Yin G, Zhang Y T, Fan H B , et al. Integrated calibration of magnetic gradient tensor system[J]. Journal of Magnetism and Magnetic Materials, 2015,374:289-297.
|
[6] |
秦葆瑚 . 磁法勘探中的梯度测量[J]. 物探与化探, 1980,4(2):12-19.
|
[6] |
Qin B H . Magnetic gradient measurement[J]. Geophysical and Geochemical Exploration, 1980,4(2):12-19.
|
[7] |
吴招才, 刘天佑 . 磁力梯度张量测量及应用[J]. 地质科技情报, 2008(3):107-110.
|
[7] |
Wu Z C, Liu T Y . Magnetic gradient tensor: its properties and uses in geophysics[J]. Geological Science and Technology Information, 2008(3):107-110.
|
[8] |
谢汝宽, 王平, 郭华 , 等. 考虑航磁水平梯度变化的ΔT网格化方法研究[J]. 地球物理学报, 2013,56(2):660-666.
|
[8] |
Xie R K, Wang P, Guo H , et al. Aeromagnetic total field gridding enhancement with horizontal gradient[J]. Chinese J. Geophys., 2013,56(2):660-666.
|
[9] |
张朝阳, 肖昌汉, 阎辉 . 磁性目标的单点磁梯度张量定位方法[J]. 探测与控制学报, 2009,31(4):44-48.
|
[9] |
Zhang Z Y, Xiao C H, Yan H . Localization of a magnetic object based on magnetic gradient tensor at a single point[J]. Journal of Detection & Control, 2009,31(4):44-48.
|
[10] |
张晨 . 磁异常及其梯度多参量联合反演研究[C]// 中国地球物理2013第十八专题论文集,中国地球物理学会, 2013.
|
[10] |
Zhang C . Magnetic anomaly and its gradient multi-parameter joint inversion[C]// Chinese Geophysical2013rd thesis collection,Chinese Geophysical Society, 2013.
|
[11] |
张川 . 吊挂式航磁三维梯度测量系统在航空物探中的应用与研究[D]. 北京:中国地质大学(北京), 2018.
|
[11] |
Zhang C . Design and application of hanging aeromagnetic three dimensional gradient measurement system[D]. Beijing:China University of Geosciences(Beijing) , 2018.
|
[12] |
李金朋, 张英堂, 范红波 , 等. 基于磁梯度张量的共轭梯度3D约束反演[J]. 探测与控制学报, 2016,38(4):88-92.
|
[12] |
Li J P, Zhang Y T, Fan H B , et al. 3D constrained inversion of conjugate gradient based on magnetic gradient tensor[J]. Journal of Detection & Control, 2016,38(4):88-92.
|
[13] |
张青杉, 麻丰林, 许丽云 . 航空三维磁梯度测量方案研究[J]. 地质与勘探, 2010,46(6):1087-1091.
|
[13] |
Zhang Q S, Ma F L, Xu L Y . Study on the 3D gradient aeromagnetic survey[J]. Geology and Exploration, 2010,46(6):1087-1091.
|
[14] |
张昌达 . 航空磁力梯度张量测量航空磁测技术的最新进展[J]. 工程地球物理学报, 2006(5):354-361.
|
[14] |
Zhang C D . Airborne tensor magnetic gradiometry-the latest progress of airborne magnetometric techology[J]. Chinese Journal of Engineering Geophysic, 2006(5):354-361.
|
[15] |
Foley C P, Leslie K E . Potential use of high Tc SQUIDS for airborne electromagnetics[J]. Exploration Geophysics, 1998,29(2) : 30-34.
|
[16] |
Foley C P, Leslie K E, Binks R , et al. Field trials using HTS SQUID magnetometers for ground-based and airborne geophysical Applications[J]. IEEE Transactions on Applied Superconductivity, 1999,9(2) : 3786-3792.
|
[17] |
Taylor P T, Kis K I, Wittmann G . Satellite-altitude horizontal magnetic gradient anomalies used to define the Kursk magnetic anomaly[J]. Journal of Applied Geophysics, 2014,109:133-139.
|
[18] |
Cowan D R, Baigent M, Cowan S . Aeromagnetic gradiometers-a perspective[J]. Exploration Geophysics, 1995,26(3):241-246.
|
[19] |
郭华, 王平, 谢汝宽 . 航磁全轴梯度数据地质解释优势研究[J]. 地球物理学进展, 2013,28(5):2688-2692.
|
[19] |
Guo H, Wang P, Xie R K . A Study of geological interpretation with the tri-axial aeromagnetic gradients[J]. Progress in Geophys., 2013,28(5):2688-2692.
|
[20] |
郭华, 吴成平 . 航磁梯度数据与地质异常反映之间的关系[J]. 地球物理学进展, 2014,29(4):1650-1656.
|
[20] |
Guo H, Wu C P . The relation between aeromagnetic gradient data and geologic anomaly[J]. Progress in Geophysics, 2014,29(4):1650-1656.
|
[21] |
严加永, 孟贵祥, 杨岳清 , 等. 新疆东准噶尔拉伊克勒克岩浆矽卡岩型富铜铁矿的发现及其成矿特征[J]. 地质论评, 2017,63(2):413-426.
|
[21] |
Yan J Y, Meng G X, Yang Y Q , et al. Discovery and metallogenic characteristics of Layikeleke magmatic skarn type of rich copper-iron deposit, eastern Junggar, Xinjiang[J]. Geological Review, 2017,63(2):413-426.
|
[22] |
吕博, 孟贵祥, 杨岳清 , 等. 新疆拉依克勒克隐伏斑岩矿床的发现、Re-Os同位素定年及地质意义[J]. 岩石学报, 2014,30(4):1168-1178.
|
[22] |
Lü B, Meng G X, Yang Y Q , et al. Discover of Layikeleke insidious porphyry deposit in Xinjiang, Re-Os isotope dating and its geological implications[J]. Acta Petrologica Sinica, 2014,30(4):1168-1178.
|
[23] |
严加永, 孟贵祥, 邓震 , 等. 新疆拉伊克勒克铜铁矿综合地球物理探测与隐伏矿定位[J]. 地质论评, 2013,59(z1):981-982.
|
[23] |
Yan J Y, Meng G X, Deng Z , et al. Integrated geophysical exploration and concealed ore location copper-iron mine in Layikelele, Xinjiang[J]. Geological Review, 2013,59(z1):981-982.
|
[24] |
李高峰, 孟贵祥, 张丽婷 , 等. 新疆东准噶尔拉伊克勒克斑岩铜(钼)矿床成岩成矿年龄、地球化学特征及其意义[J]. 地质通报, 2018,37(6):1113-1124.
|
[24] |
Li G F, Meng G X, Zhang L T , et al. Rock-forming and ore-forming ages and geochemistry of the Layikeleke porphyry Cu(Mo) deposit in East Junggar of Xinjiang and their geological significance[J]. Geological Bulletin of China, 2018,37(6):1113-1124.
|
[25] |
严加永, 孟贵祥, 邓震 , 等. 新疆拉伊克勒克铜多金属矿的发现及找矿前景[J]. 矿床地质, 2014,33(s1):763-764.
|
[25] |
Yan J Y, Meng G X, Deng Z , et al. Discovery and prospect of Layikeleke copper polymetallic deposit in Xinjiang. Mineral Deposits, 2014,33(s1):763-764.
|
[26] |
董连慧, 屈迅, 朱志新 , 等. 新疆大地构造演化与成矿[J]. 新疆地质, 2010,28(40):351-357.
|
[26] |
Dong L H, Qü X, Zhu Z X , et al. Tectonic evolution and metallogenesis of xinjiang, China[J]. Xinjiang Geology, 2010,28(40):351-357.
|
[27] |
董连慧, 朱志新, 屈迅 , 等. 新疆蛇绿岩带的分布、特征及研究新进展[J]. 岩石学报, 2010,26(10):2894-2904.
|
[27] |
Dong L H, Zhu Z X, Qü X , et al. Spatial distribution, geological features and latest research progress of the main ophiolite zones in Xinjiang, NW-China[J]. Acta Petrologica Sinica, 2010,26(10):2894-2904.
|
[28] |
杜世俊, 屈迅, 邓刚 , 等. 东准噶尔和尔赛斑岩铜矿成岩成矿时代与形成的构造背景[J]. 岩石学报, 2010,26(10):2981-2996.
|
[28] |
Du S J, Qü X, Deng G , et al. Chronology and tectonic setting of the intrusive bodies and associated porphyry copper deposit in Hersai area, eastern Junggar[J]. Acta Petrologica Sinica, 2010,26(10):2981-2996.
|
[29] |
屈迅, 徐兴旺, 梁广林 , 等. 蒙西斑岩型铜钼矿地质地球化学特征及其对东准噶尔琼河坝岩浆岛弧构造属性的制约[J]. 岩石学报, 2009,25(4):765-776.
|
[29] |
Qü X, Xü X W, Liang G L , et al. Geological and geochemical characteristics of the Mengxi Cu-Mo deposit and its constraint to tectonic setting of the Qiongheba magmatic arc in eastern Junggar, Xinjiang[J]. Acta Petrologica Sinica, 2009. 25(4):765-776.
|
[30] |
屈迅, 徐兴旺, 董连慧 , 等. 新疆东准噶尔斑岩铜矿主要构造类型[J]. 新疆地质, 2010,28(1):32-37.
|
[30] |
Qü X, Xü X W, Dong L H , et al. Tectonic types of porphyry copper deposit in eastern Junggar, Xinjiang[J]. Xinjiang Geology, 2010,28(1):32-37.
|
[31] |
Yan J Y, Chen X B, Meng G X , et al. Concealed faults and intrusions identification based on multi-scale edge detection and 3D inversion of gravity and magnetic data: A case study in Qiongheba area, Xinjiang, Northwest China[J]. Interpretation, 2019,7(2):T331-T345.
|
[32] |
刘保华, 张维冈, 孟恩 . 重力异常垂向一阶导数的一种简便算法[J]. 青岛海洋大学学报, 1995,25(2):233-238.
|
[32] |
Liu B H, Zhang W G, Meng E . A simple method for calculating the first vertical derivative of gravity anomaly[J]. 1995,25(2):233-238.
|
[33] |
高秀鹤 . 重磁及张量梯度数据三维反演方法研究与应用[D]. 长春:吉林大学, 2019.
|
[33] |
Gao X H . The study and application of 3D inversion methods of gravity&magnetic and their gradient tensor data[D]. Changchun: Jilin University, 2019.
|
[34] |
王万银 . 位场解析信号振幅极值位置空间变化规律研究[J]. 地球物理学报, 2012,55(4):1288-1299.
|
[34] |
Wang W Y . Spatial variation law of the extreme value position of analytical signal amplitude for potential field data. Chinese[J]. Geophys. , 2012,55(4):1288-1299.
|
[35] |
王万银, 邱之云, 杨永 , 等. 位场边缘识别方法研究进展[J]. 地球物理学进展, 2010,25(1):196-210.
|
[35] |
Wang W Y, Qiu Z Y, Yang Y , et al. Some advances in the edge recognition of the potential field[J]. Progress in Geophys. , 2010,25(1):196-210.
|
[36] |
张季生, 高锐, 李秋生 , 等. 欧拉反褶积与解析信号相结合的位场反演方法[J]. 地球物理学报, 2011,54(6):1634-1641.
|
[36] |
Zhang J S, Gao R, Li Q S , et al. A combined Euler and analytie signal method for an inversion calculation of potential data[J]. Chinese J. Geophys, 2011,54(6):1634-1644.
|
[1] |
CHEN Da-Lei, WANG Run-Sheng, HE Chun-Yan, WANG Xun, YIN Zhao-Kai, YU Jia-Bin. Application of integrated geophysical exploration in deep spatial structures: A case study of Jiaodong gold ore concentration area[J]. Geophysical and Geochemical Exploration, 2022, 46(1): 70-77. |
[2] |
Yu-Zhen ZHU, Jian-Ke QIANG, Lin-Fei WANG, Wen-Yan ZHANG, Shi-Kun DAI. Three-dimensional inversion analysis of magnetic data from deep buried iron ore and prediction of prospecting target area[J]. Geophysical and Geochemical Exploration, 2019, 43(6): 1182-1190. |
|
|
|
|