|
|
The geophysical field characteristics of geothermal field with banded reservoir: Taking an example of Reshui-Town geothermal field, Hunan Province |
Bao-Feng ZHAO, Qi-Nian WANG, Da-Wei GUAN |
Geological Exploration Technology Institute of Anhui Province, Hefei 230041, China |
|
|
Abstract The Reshui-Town geothermal field in Hunan Province is one of the highest temperature and largest reserves geothermal field in the southeastern coastal area, and the reservoir form is banded. In order to analyze the distribution law of the reservoir and guide the exploration in similar areas, high-precision gravity and magnetic measurement and controlled source audio magnetotelluric measurement (CSAMT) were arranged in the area to construct the fault system and analyze the geophysical field characteristics of an excellent thermal reservoir zone. The results as following: 1. Two groups of four-direction faults were developed in the area. The first group was the early vertical NNE and NWW faults, and the second group was the late formation angle of about 75° near NS and NEE. 2. The excellent thermal reservoir is located near the intersection of NWW fault F4 and near NS fault F7. It shows the boundary of gravity between the low value area and the high value area, the boundary of low magnetic anomaly and high anomaly, electricity Vertical electrical low resistance zone on the cross section of the method.
|
Received: 04 December 2018
Published: 15 August 2019
|
|
|
|
|
|
The geological map of Reshui-Town geothermal field and geophysical work scope a—regional fault distribution in southeastern China;b—Zhuguangshan rock mass and its faults;c—geology and location of surveying lines in the study area
|
地层或岩体 | 岩性 | 密度值 (103 kg·m-3) | 磁化率 (4π×10-6SI) | 电阻率 (Ω·m) | 第四系(Q) | 冲积物泥、砂、砾 | 1.80~1.92 | 2~21 | — | 寒武系(∈) | 砂岩、碳板岩、板岩 | 2.57~2.61 | 6~52 | 1900~6000 | 震旦系(Z) | 砂岩、硅质岩、板岩 | 2.54~2.59 | 11~23 | 1800~5600 | 岭秀组(Ptlx) | 砂岩、板岩 | 2.57~2.60 | 10~22 | 2100~6300 | 岩体() | 二长花岗岩 | 2.56~2.58 | 1~21 | 4900~13000 | 其他 | 含裂隙岩石 | — | — | 20~180 |
|
The physical parameter of strata and granite
|
|
The gravity field characteristics of fault system a—bouguer gravity anomaly;b—bouguer gravity residual anomaly;c—horizontal total gradient of bouguer gravity anomaly;d—faults and distribution of geothermal wells
|
|
The magnetic abnormal reaction of faults and rock mass a—magnetization pole anomaly ΔT;b—Total horizontal gradient of magnetization pole anomaly
|
|
The inversion section and geological interpretation of controlled source audio magnetotelluric measurement
|
井名 | 深度/m | 水温/℃ | 水量/(L·s-1) | 断裂 | 裂隙层厚/m | 岩性 | 备注 | ZK1 | 268 | 92 | 26 | F4/F7 | 112.6 | 变质岩 | 高温/高水量 | ZK4 | 212 | 91.2 | 20.1 | F7 | 84.8 | 变质岩 | 高温/高水量 | ZK16 | 343 | 87 | 1 | F2 | 34.3 | 变质岩 | 高温/中水量 | ZK14 | 295 | 70 | — | F4/F11 | 50.2 | 变质岩/花岗岩 | 高温 | ZK15 | 350 | 82 | 1.9 | F12 | 52.5 | 花岗岩 | 高温/中水量 | ZK21 | 287 | 84 | 0.25 | F12 | 43.1 | 花岗岩 | 高温/低水量 | ZK19 | 379 | 88 | 0.5 | F13 | 45.5 | 花岗岩 | 高温/低水量 | ZK3 | 399 | 68 | 15.8 | F4/F2 | 63.8 | 变质岩 | 中温/高水量 | ZK8 | 189 | 47 | 6.5 | F7 | 32.1 | 变质岩 | 中温/高水量 | ZK5 | 190 | 41 | 1.67 | F7 | 20.9 | 变质岩 | 中温/中水量 | ZK2 | 298 | 63 | 0.2 | F10 | 128.1 | 变质岩 | 中温/低水量 | ZK11 | 300 | 58 | — | F10 | 63.0 | 变质岩/花岗岩 | 中温 | ZK20 | 305 | 61 | — | — | 9.2 | 花岗岩/变质岩 | 中温 | ZK6 | 160 | 46 | — | F3 | 8.0 | 花岗岩/变质岩 | 中温 | ZK10 | 293 | 41 | — | F1 | 52.7 | 变质岩 | 中温 | ZK7 | 197 | 37 | 1.2 | F1 | 9.9 | 变质岩 | 低温/中水量 | ZK17 | 120 | 38 | — | — | 3.0 | 变质岩 | 低温 | ZK12 | 214 | 38 | — | — | 6.4 | 变质岩 | 低温 | ZK9 | 150 | 36 | — | F5 | 15.0 | 变质岩 | 低温 | ZK18 | 201 | 34 | — | F2/F5 | 50.3 | 变质岩 | 低温 |
|
The comprehensive drilling information of Reshui-Town geothermal field
|
[1] |
汪集旸 . 中低温对流型地热系统[J]. 地学前缘, 1996(3):96-100.
|
[1] |
Wang J Y . Low-medium temperature geothermal system of convective type[J]. Earth Science Frontiers, 1996(3):96-100.
|
[2] |
李超文, 彭头平 . 湖南地热资源分布及远景区划[J]. 湖南地质, 2001,20(4):272-276.
|
[2] |
Li C W, Peng T P . Resources distribution of ground warm-mater in Hunan province and its prespective[J]. Hunan Geology, 2001,20(4):272-276.
|
[3] |
Reed M J . Assessment of low-temperature geothermal resources of the United States-1982[J]. Nursing Mirror, 1982,145(24):10.
|
[4] |
徐亚东, 梁银平, 江尚松 , 等. 中国东部新生代沉积盆地演化[J]. 地球科学—中国地质大学学报, 2014(8):1079-1098.
|
[4] |
Xu Y D, Liang Y P, Jiang S S , et al. Evolution of Cenozoic sedimentary basins in eastern China[J]. Earth Science:Journal of China University of Geosciences, 2014(8):1079-1098.
|
[5] |
李建威, 李先福, 李紫金 , 等. 走滑变形过程中的流体包裹体研究——以湘东地区为例[J]. 大地构造与成矿学, 1999,23(3):240-247.
|
[5] |
Li J W, Li X F, Li Z J , et al. Fluid inclusions study in the process of strike slip faulting-A case study in eastern Hunan Province[J]. Geotectonicaet Metallogenia, 1999,23(3):240-247.
|
[6] |
邓平, 任纪舜, 凌洪飞 , 等. 诸广山南体印支期花岗岩的SHRIMP锆石U-Pb年龄及其构造意义[J]. 科学通报, 2012,57(14):1231-1241.
|
[6] |
Deng P, Ren J S, Ling H F , et al. SHRIMP zircon U-Pb ages and tectonic implications for Indosinian granitoids of southern Zhuguangshan granitic composite, South China[J]. Chinese Science Bulletin, 2012,57(14):1231-1241.
|
[7] |
舒良树, 邓平, 王彬 , 等. 南雄—诸广地区晚中生代盆山演化的岩石化学、运动学与年代学制约[J]. 中国科学:地球科学, 2004,34(1):1-13.
|
[7] |
Shu L S, Deng P, Wang B , et al. Lithology, kinematics and geochronology related to Late Mesozoic basin-mountain evolution in the Nanxiong-Zhuguang area, South China[J]. Science China: Science Earth, 2004,34(1):1-13.
|
[8] |
李三忠, 张国伟, 周立宏 , 等. 中、新生代超级汇聚背景下的陆内差异变形:华北伸展裂解和华南挤压逆冲[J]. 地学前缘, 2011,18(3):79-107.
|
[8] |
Li S Z, Zhang G W, Zhou L H , et al. The opposite Meso-Cenozoic intracontinental deformations under the super-convergence: rifting and extension in the North China Craton and shortening and thrusting in the South China Craton[J]. Earth Science Frontiers, 2011,18(3):79-107.
|
[9] |
傅昭仁, 李紫金, 郑大瑜 . 湘赣边区NNE向走滑造山带构造发展样式[J]. 地学前缘, 1999,6(4):263-273.
|
[9] |
Fu Z R, Li J Z, Zheng D Y . Structural pattern and tectonic evolution of NNE-trending strike-slip orogenic belt in the border region of Hunan and Jiangxi Provinces[J]. Earth Science Frontiers, 1999,6(4):263-273.
|
[10] |
徐忠祥 . 漳州盆地地热异常与重磁异常的相关性研究[J]. 地球科学:中国地质大学学报, 1988(3):53-58.
|
[10] |
Xu Z X . Correlative research between geothemal and gravity-magnetic anomalies in Zhangzhou basin[J]. Earth Science:Journal of China University of Geosciences, 1988(3):53-58.
|
[11] |
胡宁, 张良红, 高海发 . 综合物探方法在嘉兴地热勘查中的应用[J]. 物探与化探, 2011,35(3):319-324.
|
[11] |
Hu N, Zhang L H, Gao H F . The application of integrated geophysical exploration to geothermal exploration in Jiaxing City[J]. Geophysical and Geochemical Exploration, 2011,35(3):319-324.
|
[12] |
李弘, 俞建宝, 吕慧 , 等. 雄县地热田重磁响应及控热构造特征研究[J]. 物探与化探, 2017,41(2):242-248.
|
[12] |
Li H, Yu J B, Lv H , et al. Gravity and aeromagnetic responses and heat-controlling structures of Xiongxian geothermal area[J]. Geophysical and Geochemical Exploration, 2017,41(2):242-248.
|
[13] |
周立坚 . 汝城地热田地热井非线性增温成因浅析[J]. 华南地质与矿产, 2016,32(3):218-223.
|
[13] |
Zhou L J . The cause of nonlinear temperature increase of geothermal well in Rccheng geothermal field[J]. Geology and Mineral Resources of South China, 2016,32(3):218-223.
|
[14] |
张德权, 石生明, 程建祥 , 等. 物探方法在汤池河地热勘查中的应用效果[J]. 水文地质工程地质, 2005,32(1):102-104.
|
[14] |
Zhang D Q, Shi S M, Cheng J X , et al. The application of geophysical method at Tangchi river geothermal exploration[J]. Hydrogeology and Engineering Geology, 2005,32(1):102-104.
|
[15] |
伍开江, 周启友 . 岩柱中水体入渗过程的高密度电阻率成像法研究[J]. 水文地质工程地质, 2005,32(2):76-81.
|
[15] |
Wu J J, Zhou Q Y . Study about water infiltration process in rock block using high density electrical resistivity tomography[J]. Hydrogeology and Engineering Geology, 2005,32(2):76-81.
|
[16] |
周启友, 杭悦宇, 刘汉乐 , 等. 饱水和排水过程中岩石电阻率各向异性特征的电阻率成像法研究[J]. 地球物理学报, 2009,52(1):281-288.
|
[16] |
Zhou Q Y, Hang Y Y, Liu H L , et al. The anisotropic properties of rock resistivity during saturation and desaturation processes revealed by electrical resistivity tomography[J]. Chinese Journal of Geophysics, 2009,52(1):281-288.
|
[17] |
孟银生, 姚长利, 刘瑞德 , 等. 地热田温度预测的反演电阻率方法[J]. 物探与化探, 2011,35(1):58-60.
|
[17] |
Meng Y S, Yao C L, Liu R D , et al. The prediction of the geothermal field temperature by means of resistivity inversion[J]. Geophysical and Geochemical Exploration, 2011,35(1):58-60.
|
[1] |
CHEN Qing, SUN Shuai, DING Cheng-Yi, HUANG Xiao-Yu, CHEN Hao, SHEN Peng, LUO Gang, WEI Yao-Cong. Application of iTilt-Euler deconvolution in gravity data processing and fault system interpretation[J]. Geophysical and Geochemical Exploration, 2021, 45(6): 1578-1587. |
[2] |
WANG Jia-Long, DI Bing-Ye, ZHANG Bao-Song, ZHAO Dong-Dong. The application of audio frequency magnetotelluric method to the geothermal exploration: A case study of Huangniqiao area, Ninghua County, Fujian Province[J]. Geophysical and Geochemical Exploration, 2021, 45(3): 576-582. |
|
|
|
|