|
|
Numerical simulation of pseudo acoustic wave equation in TTI medium |
Jie HUANG( ), Guo-Quan YANG, Zhen-Chun LI, Bing-Luo GU |
School of Geosciences,China University of Petroleum (East China),Qingdao 266580,China |
|
|
Abstract TTI qP wave numerical simulation method is more accurate than VTI qP wave numerical simulation method in describing the propagation law of seismic wavefield in anisotropic medium because of considering the dip angle factor.Using the pseudo acoustic wave equation,the authors carried out high order finite difference numerical simulation of the seismic wavefield in the TTI medium in this paper.After improving the distribution of the attenuation function,the authors used the improved perfectly matched layer (PML) boundary control equation to deal with the wavefield boundary and achieved good results.Then the pseudo shear wave in the numerical simulation of pseudo acoustic wave equation was suppressed and the stability problem was analyzed.The numerical simulation of different models prove that the TTI medium pseudo acoustic wave equation is stable and the PML boundary control equations have high reliability and applicability.
|
Received: 18 November 2016
Published: 20 February 2018
|
|
|
|
|
[1] |
牟永光,裴正林.三维复杂介质地震数值模拟[M].北京:石油工业出版社,2005:1-13.
|
[2] |
Alkhalifah T.Acoustic approximations for processing in transversely isotropic media[J].Geophysics,1998,63(2):623-631.
|
[3] |
Alkhalifah T.An acoustic wave equation for anisotropic media[J].Geophysics,2000,65(4):1239-1250.
|
[4] |
Zhou H,Zhang G,Bloor R.An anisotropic acoustic wave equation for VTI media[C]//68th EAGE Conference and Exhibition Incorporating SPE EUROPEC 2006.Vienna,Austria:EAGE,2006:H033.
|
[5] |
Du X,Fletcher R,Fowler P J.A new pseudo-acoustic wave equation for VTI media[C]//70th EAGE Conference and Exhibition Incorporating SPE EUROPEC 2008.Rome:European Association of Geoscientists and Engineers,2008:1-5.
|
[6] |
Hestholm S.Acoustic VTI modeling using high-order finite differences[J].Geophysics,2009,74(5):T67-T73.
|
[7] |
Zhou H B,Zhang G Q,Bloor R.An anisotropic acoustic wave equation for modeling and migration in 2D TTI media[C]//Expanded Abstracts of 76th SEG Annual International Meeting.Tulsa,OK:SEG,2006:194-198.
|
[8] |
Fletcher R,Du X,Fowler P J.A new pseudo-acoustic wave equation for TI media[C]//Expanded Abstracts of 78th SEG Annual Internet Meeting.Tulsa,OK:SEG,2008:2082-3086.
|
[9] |
Duveneck E,Milcik P,Bakker P M,et al.Acoustic VTI wave equations and their application for anisotropic reverse-time migration[C]//Expanded Abstracts of 78th SEG Annual International Meeting.Tulsa,OK:SEG,2008:2186-2190.
|
[10] |
Duveneck E,Bakker P M.Stable P-wave modeling for reverse-time migration in tilted TI media[J].Geophysics,2011,76(2):S65-S75.
|
[11] |
Fowler P J,Du X,Fletcher R P.Coupled equations for reverse time migration in transversely isotropic media[J].Geophysics,2010,75(1):S11-S22.
|
[12] |
Liu F Q,Morton S A,Jiang S S,et al.Decoupled wave equations for P and SV waves in an acoustic VTI media[C]//SEG Technical Program Expanded Abstracts 2009.Tulsa,OK:SEG,2009:2844-2848.
|
[13] |
Pestana R C,Ursin B,Stoffa P L.Separate P- and SV-wave equations for VTI media[C]//SEG Technical Program Expanded Abstracts 2011.Tulsa,OK:SEG,2011:163-167.
|
[14] |
Chu C L,Macy B K,Anno P D.An accurate and stable wave equation for pure acoustic TTI modeling[C]//SEG Technical Program Expanded Abstracts 2011.Tulsa,OK:SEG,2011:179-184.
|
[15] |
Zhan G,Pestana R C,Stoffa P L.An acoustic wave equation for pure P wave in 2D TTI media[C]//SEG Technical Program Expanded Abstracts 2011.Tulsa,OK:SEG,2011:168-173.
|
[16] |
Barrera Pacheco D F,Pestana R,Vivas F.New pseudo-acoustic wave equations for modeling and reverse time migration in TTI media[C]//75th EAGE Conference & Exhibition Incorporating SPE EUROPEC 2013.London:SPE,2013.
|
[17] |
Thomsen L.Weak elastic anisotropy[J].Geophysics,1986,51(10):1954-1966.
|
[18] |
张岩,吴国忱.TTI介质qP波逆时偏移中伪横波噪声压制方法[J].地球物理学报,2013,56(6):2065-2076.
|
[19] |
刘洋,李承楚,牟永光.任意偶数阶精度有限差分法数值模拟[J].石油地球物理勘探,1998,33(1):1-10.
|
[20] |
Berenger J P.A perfectly matched layer for the absorption of electromagnetic waves[J].Journal of Computational Physics,1994,114(2):185-200.
|
[21] |
Collino F,Tsogka C.Application of the perfectly matched absorbing layer model to the linear elastodynamic problem in anisotropic heterogeneous media[J].Geophysics,2001,66(1):294-307.
|
[22] |
Komatitsch D,Tromp J.A Perfectly Matched Layer absorbing boundary condition for the second-order seismic wave equation[J].Geophysical Journal International,2003,154(1):146-153.
|
[23] |
Hastings F D,Schneider J B,Broschat S L.Application of the perfectly matched layer (PML) absorbing boundary condition to elastic wave propagation[J].The Journal of the Acoustical Society of America,1996,100(5):3061-3069.
|
[24] |
Groby J P,Tsogka C.A time domain method for modeling viscoacoustic wave propagation[J].Journal of Computational Acoustics,2004,14(2):201-236.
|
[25] |
Tsvankin I.Seismic signatures and analysis of reflection data in anisotropic media[M].London:Pergamon,2001.
|
[26] |
Grechka V,Zhang L B,Rector J W.Shear waves in acoustic anisotropic media[J].Geophysics,2004,69(2):576-582.
|
[27] |
Xu S,Zhou H B.Accurate simulations of pure quasi-P-waves in complex anisotropic media[J].Geophysics,2014,79(6):T341-T348.
|
[1] |
SHAN Xi-Peng, XIE Ru-Kuan, LIANG Sheng-Jun, YU Xue-Zhong. An analysis of the influencing factors of helicopter TEM survey[J]. Geophysical and Geochemical Exploration, 2021, 45(1): 178-185. |
[2] |
Xiao-Jing CHEN, Xin-Jun HU, Ning-Sheng LI, Bai-Zhou AN, Ya-Dong BAI. Research on the deep geological structure in Yinchuan Plain: 3D modeling based on geophysical data[J]. Geophysical and Geochemical Exploration, 2020, 44(2): 245-253. |
|
|
|
|