|
|
|
| Performance and analysis of seismic recognition in coal mine underground roadways |
YANG Xiao-Dong1( ), ZHANG Jian-Qiang2, GENG Li-Qiang1, ZHANG Xue-Qi3, CHENG Hui-Hui1, KANG Ran1 |
1. Coal Geological Geophysical Exploration Surveying & Mapping Institute of Shanxi Province,Jinzhong 030600,China 2. Inner Mongolia Yitai Guanglian Coal Chemical Co.,Ltd.,Ordos 017000,China 3. Inner Mongolia Yitai Coal Co.,Ltd.,Ordos 017000,China |
|
|
|
|
Abstract The small-scale coal mines and goaves of roadways in coal mines have a significant impact on coal mine safety production.Moreover,the limited space of roadways makes geophysical exploration very difficult,calling for higher requirements on the resolution and fidelity of seismic data.In this study,a node seismograph,with a 10 Hz natural frequency of geophones,was used for the acquisition of 3D seismic data.During data interpretation,the extraction root mean square(RMS) amplitude identified the presence of a known roadway with a cross-section of 5 m×4 m.Then,by further extracting the spectral decomposition attributes and coherent energy gradients,the characteristics of the roadway anomalies were intensified,with the revealed anomaly centers aligning with the known roadway positions.In conjunction with forward modeling analysis,the 10 Hz geophone exhibited a high resolution for deep-buried coal mine roadways, and the seismic attribute technologies proved to be an effective means to highlight roadway anomalies.These findings can provide critical reference for the interpretation of small coal seams and goaf-side roadways in coal mines.
|
|
Received: 13 April 2025
Published: 23 October 2025
|
|
|
|
|
|
|
Geological model of roadway(partial zoom in display)
|
| 介质 | 厚度/m | 速度/(m·s-1) | | 盖层 | 850 | 3100 | | 3-1煤层 | 8 | 2000 | | 煤(岩)巷 | 4 | 340 | | 3-1煤层底板 | 40 | 3200 | | 4-1煤层 | 4 | 2100 | | 4-1煤层底板 | 106 | 3300 |
|
The parameters of the roadway model
|
|
Forward simulation migration profile
|
|
Amplitude and spectral characteristics of forward time profile
|
|
Seismic time profiles of reflected waves and spectrum from main coal seams in the study area
|
|
Coal seam reflection wave seismic attribute
|
| [1] |
潘冬明, 李娟娟, 胡明顺, 等. 多煤层的反射地震响应特性研究[J]. 地球物理学进展, 2010, 25(5):1769-1774.
|
| [1] |
Pan D M, Li J J, Hu M S, et al. Study of reflection response to multilayer coal seams[J]. Progress in Geophysics, 2010, 25(5):1769-1774.
|
| [2] |
张利兵, 董守华. 煤矿采区地震勘探不同检波器接收试验与分析[J]. 煤田地质与勘探, 2020, 48(6):33-39.
|
| [2] |
Zhang L B, Dong S H. Reception test and analysis of different geophones in coal mining districts seismic exploration[J]. Coal Geology & Exploration, 2020, 48(6):33-39.
|
| [3] |
方良才, 赵伟, 徐羽中, 等. 淮南煤田三维地震勘探技术应用进展[J]. 中国煤炭地质, 2010, 22(8):73-82.
|
| [3] |
Fang L C, Zhao W, Xu Y Z, et al. Progression of 3D seismic prospecting technology application in Huainan mining area[J]. Coal Geology of China, 2010, 22(8):73-82.
|
| [4] |
成新选, 白玉山, 王博, 等. 常用模拟地震检波器接收效果对比[J]. 物探装备, 2024, 34(2):75-78.
|
| [4] |
Cheng X X, Bai Y S, Wang B, et al. Comparison of reception effect of commonly used analog seismic geophones[J]. EGP, 2024, 34(2):75-78.
|
| [5] |
张爱敏, 刘天放, 李海山. 高分辨率三维地震勘探对巷道反射波的检测[J]. 煤田地质与勘探, 1995, 23(5):48-53.
|
| [5] |
Zhang A M, Liu T F, Li H S. Detection of reflected wave in roadway by high resolution three-dimensional seismic exploration[J]. Coal Geology & Exploration, 1995, 23(5):48-53.
|
| [6] |
朱红娟. 三维地震属性解释技术在巷道探测中的应用[J]. 煤田地质与勘探, 2015, 43(4):90-93.
|
| [6] |
Zhu H J. Application of 3D seismic attribute interpretation technology in the detection of roadway[J]. Coal Geology & Exploration, 2015, 43(4):90-93.
|
| [7] |
陈强, 田伟, 曾维望. 频谱分解技术在探测煤矿巷道中的应用[J]. 科技情报开发与经济, 2010(2):163-164.
|
| [7] |
Chen Q, Tian W, Zeng W W. The application of spectrum decomposition technique in the detection of coal mine tunnel[J]. Sci-Tech Information Development & Economy, 2010(2):163-164.
|
| [8] |
李君, 马丽, 秦永军, 等. 基于小波变换的频谱分解在煤矿巷道探测中的应用[J]. 煤炭科技, 2017, 38(2):92-94.
|
| [8] |
Li J, Ma L, Qin Y J, et al. Application of spectral decomposition based on wavelet transform in coal mine roadway detection[J]. Coal Science & Technology Magazine, 2017, 38(2):92-94.
|
| [9] |
王亚琪, 幸晓凤. 最大似然体属性在煤田老窑巷道识别中的应用[J]. 煤炭与化工, 2020, 43(11):51-54.
|
| [9] |
Wang Y Q, Xing X F. Application of maximum likelihood attributes in recognition of old roadways in coal fields[J]. Coal and Chemical Industry, 2020, 43(11):51-54.
|
| [10] |
彭凡, 杜文凤, 刘洪栓. 基于地震多属性融合技术的煤层巷道识别方法[J]. 煤炭科学技术, 2021, 49(6):235-241.
|
| [10] |
Peng F, Du W F, Liu H S. Coal seam roadway identification method based on seismic multi-attribute fusion technology[J]. Coal Science and Technology, 2021, 49(6):235-241.
|
| [11] |
单蕊. 倾角曲率属性在煤层巷道识别中的应用[J]. 煤田地质与勘探, 2020, 48(5):197-203.
|
| [11] |
Shan R. Application of the dip curvature attributes in the recognition of coal roadway[J]. Coal Geology & Exploration, 2020, 48(5):197-203.
|
| [12] |
王增明. 地震采集中检波器自然频率的试验分析[J]. 石油地球物理勘探, 2003, 38(3):308-316.
|
| [12] |
Wang Z M. Test and analysis of geophone’s free frequency in seismic acquisition[J]. Oil Geophysical Prospecting, 2003, 38(3):308-316.
|
| [13] |
李庆忠. 走向精确勘探的道路:高分辨率地震勘探系统工程剖析[M]. 北京: 石油工业出版社,1993.
|
| [13] |
Li Q Z. The way to obtain a better resolution in seismic prospecting[M]. Beijing: Petroleum Industry Press,1993.
|
| [14] |
彭苏萍, 赵惊涛, 盛同杰, 等. 煤田绕射地震勘探现状与进展[J]. 煤田地质与勘探, 2023, 51(1):1-20.
|
| [14] |
Peng S P, Zhao J T, Sheng T J, et al. Status and advance of seismic diffraction exploration in coalfield[J]. Coal Geology & Exploration, 2023, 51(1):1-20.
|
| [15] |
刘建, 沈鸿雁, 席井昌, 等. 利用绕射波提高煤田陷落柱预测精度的方法[J]. 煤炭学报, 2022, 47(9):3442-3450.
|
| [15] |
Liu J, Shen H Y, Xi J C, et al. Improving the prediction accuracy of coalfield collapse column via diffraction wave imaging[J]. Journal of China Coal Society, 2022, 47(9):3442-3450.
|
| [16] |
王晓毅, 陈玺, 杨振, 等. 绕射波逆时偏移成像方法研究[J]. 地球物理学报, 2022, 65(1):320-332.
|
| [16] |
Wang X Y, Chen X, Yang Z, et al. Research on diffraction wave reverse time migration imaging methods[J]. Chinese Journal of Geophysics, 2022, 65(1):320-332.
|
| [17] |
霍伟光, 曹静杰, 陈雪, 等. 基于Cook距离的阻尼多道奇异谱分析分离绕射波[J]. 石油地球物理勘探, 2024, 59(4):771-781.
|
| [17] |
Huo W G, Cao J J, Chen X, et al. Damped multichannel singular spectrum analysis for diffraction separation based on the Cook-distance[J]. Oil Geophysical Prospecting, 2024, 59(4):771-781.
|
| [18] |
李才, 吕丁友, 张德龙, 等. 联合波束分解和球面角度分解的绕射波成像[J]. 石油地球物理勘探, 2025, 60(1):127-136.
|
| [18] |
Li C, Lyu D Y, Zhang D L, et al. Diffraction imaging based on beam decomposition and spherical angle decomposition[J]. Oil Geophysical Prospecting, 2025, 60(1):127-136.
|
| [19] |
王志辉, 吕庆田, 刘振东, 等. 地震绕射波分离方法研究进展[J]. 地球物理学进展, 2019, 34(1):221-228.
|
| [19] |
Wang Z H, Lyu Q T, Liu Z D, et al. Progress of seismic diffractions separation methods[J]. Progress in Geophysics, 2019, 34(1):221-228.
|
| [20] |
栾锡武, 杨佳佳. 地震绕射波波场分离与成像方法综述[J]. 石油物探, 2022, 61(5):761-770.
|
| [20] |
Luan X W, Yang J J. A review of seismic diffraction wavefield separation and imaging methods[J]. Geophysical Prospecting for Petroleum, 2022, 61(5):761-770.
|
| [21] |
杜长江, 张中平, 高启才, 等. GeoEast系统相干体技术在煤田地质异常识别中的应用[J]. 石油地球物理勘探, 2014, 49(S1):208-211,9.
|
| [21] |
Du C J, Zhang Z P, Gao Q C, et al. Application of GeoEast system coherence volume technology in coal field geological anomaly identification[J]. Oil Geophysical Prospecting, 2014, 49(S1):208-211,9.
|
| [22] |
孙夕平, 杜世通. 相干体技术算法研究及其在地震资料解释中的应用[J]. 石油大学学报:自然科学版, 2003, 27(2):32-35,40-7.
|
| [22] |
Sun X P, Du S T. Development and application of algorithm of coherency cub technique to seismic interpretation[J]. Journal of the University of Petroleum,China, 2003, 27(2):32-35,40-7.
|
| [23] |
白博, 秦志亮, 于婷. 地震相干体算法研究与应用[J]. 中国石油和化工标准与质量, 2017, 37(12):87-89.
|
| [23] |
Bai B, Qin Z L, Yu T. Research and application of seismic coherent volume algorithm[J]. China Petroleum and Chemical Standard and Quality, 2017, 37(12):87-89.
|
| [24] |
苑书金. 地震相干体技术的研究综述[J]. 勘探地球物理进展, 2007(1):7-15,11.
|
| [24] |
Yuan S J. A review of seismic coherence techniques[J]. Progress in Exploration Geophysics, 2007(1):7-15,11.
|
| [25] |
张军华, 董猛, 周振晓, 等. 基于GST的相干体方法研究及应用[J]. 天然气工业, 2007, 27(S1):381-383.
|
| [25] |
Zhang J H, Dong M, Zhou Z X, et al. Research and application of coherent volume method based on GST[J]. Natural Gas Industry, 2007, 27(S1):381-383.
|
| [26] |
赵胤飞. 多属性融合技术在断层识别中的应用[J]. 化学工程与装备, 2021 (6):146-147.
|
| [26] |
Zhao Y F. Application of multi attribute fusion technology in fault identification[J]. Chemical Engineering & Equipment, 2021(6):146-147.
|
| [27] |
安鹏, 于志龙, 党虎强, 等. 地震属性技术在湖底河道砂体刻画中的应用[J]. 石油地球物理勘探, 2017, 52(S2):194-199,9-10.
|
| [27] |
An P, Yu Z L, Dang H Q, et al. Application of seismic attribute technology in sand body characterization of lake bottom channel[J]. Oil Geophysical Prospecting, 2017, 52(S2):194-199,9-10.
|
| [28] |
赵喜彬. 相干能量梯度与属性比例融合在断裂构造解释中的应用[J]. 中国煤炭地质, 2014, 26(10):69-72.
|
| [28] |
Zhao X B. Application of coherent energy gradient and attribute proportional integration in faulted structure interpretation[J]. Coal Geology of China, 2014, 26(10):69-72.
|
| [29] |
韩红涛, 贾敬, 李慧琳, 等. 应用GeoEast解释系统中的地震属性技术预测生物礁滩[J]. 石油地球物理勘探, 2014, 49(S1):160-163,7.
|
| [29] |
Han H T, Jia J, Li H L, et al. Application of seismic attribute technology in GeoEast interpretation system to predict biological reef beach[J]. Oil Geophysical Prospecting, 2014, 49(S1):160-163,7.
|
| [30] |
陈国文, 李正中, 李洪革, 等. 宽方位角地震资料在裂缝性储层预测中的应用[J]. 石油天然气学报, 2014, 36(3):60-64,6.
|
| [30] |
Chen G W, Li Z Z, Li H G, et al. Application of wide-azimuth seismic data in fractured reservoir prediction[J]. Journal of Oil and Gas Technology, 2014, 36(3):60-64,6.
|
| [1] |
Yierfan Aximujiang, LU Zhi-Ming, Aini Maimaiti, Mierzhati Dilimulati, Duolikun Maimaitiming. Prediction of thin interbedded sandstone reservoir thickness using multi-attribute fusion technology:A case study from the W oilfield,Kazakhstan[J]. Geophysical and Geochemical Exploration, 2025, 49(5): 1110-1117. |
| [2] |
SUN Si-Yuan, GAO Xiu-He, CAO Xue-Feng. Footprint analysis and footprint-FFT-based fast forward modeling of potential fields[J]. Geophysical and Geochemical Exploration, 2025, 49(1): 63-72. |
|
|
|
|