|
|
Application of integrated geophysical exploration in an extra-long deep tunnel in the seismically active mountainous region, Southwest China |
WU Yuan-Ming1( ), XING Ze-Feng2, LU Guang-Yin2 |
1. Hunan Provincial Communications Planning, Survey & Design Institute Co., Ltd., Changsha 410219, China 2. School of Geosciences and Info-Physics, Central South University, Changsha 410083, China |
|
|
Abstract The Dafengding tunnel is an extra-long deep tunnel in the seismically active mountainous region characterized by exceptionally complex geologic and hydrogeologic conditions in Southwest China. The primary challenges in the tunnel investigation arise from complex geological conditions and unfavorable exploration environments. Moreover, developing effective seismic mitigation measures necessitates precisely determining the fragmentation and water-bearing characteristics of rock masses at the tunnel site. Hence, based on the initial classification of regional lithologies using geologic data, this study conducted integrated geophysical exploration at the tunnel site by combining the audio-frequency magnetotelluric method with high-resolution electrical resistivity tomography. The results indicate that the integrated geophysical exploration effectively revealed the overall variation in apparent resistivity at the tunnel site and the shallow apparent resistivity distribution, particularly the characteristics of the electric field near the tunnel portal. These findings enabled the inference of the fragmentation and water-bearing characteristics of rock masses at the tunnel site. Moreover, the borehole data effectively validated the effectiveness of the integrated geophysical exploration, demonstrating that the integrated geophysical exploration can provide a valuable reference for the investigation and construction of extra-long deep tunnels in seismically active regions.
|
Received: 04 December 2024
Published: 22 July 2025
|
|
|
|
|
岩性 | ρ/(Ω·m) | 岩性 | ρ/(Ω·m) | 灰岩 | 500~6000 | 白云岩 | 200~3000 | 砂岩 | 100~2000 | 碳质页岩 | 100~2000 | 粉砂岩 | 50~1000 | 玄武岩 | 1500~8000 |
|
Statistics of mineral resistivity ranges in the tunnel location
|
|
Schematic of geological structures and geophysical survey lines in the tunnel area
|
地质 背景 | 推断解释 | ρs/ (Ω·m) | lg[ρs/ (Ω·m)] | 围岩 级别 | 碳酸盐岩地层 | 极破碎、富水溶洞 | ≤50 | ≤1.7 | V | 风化破碎、溶蚀发育区 | 50~2200 | 1.7~2.3 | IV | 弱风化带岩石 | 200~700 | 2.3~2.8 | III | 微风化、完整坚硬岩石 | ≥700 | ≥2.8 | II | 碎屑岩地层 | 极破碎、富水岩石 | ≤50 | ≤1.7 | V | 破碎、富水性强、强风化带 | 50~200 | 1.7~2.3 | IV | 较破碎、富水性中、弱风化带 | 200~500 | 2.3~2.7 | III | 富水性弱、微风化带 | ≥500 | ≥2.7 | II | 火山岩地层 | 岩石破碎、极软弱或 富水岩体 | ≤300 | ≤2.5 | V | 破碎、软弱或含水岩体 | 300~1000 | 2.5~3 | IV-V | 较破碎、富水性中到弱 | 1000~2000 | 3~3.3 | IV | 岩体较完整、富水性弱 | ≥2000 | ≥3.3 | III |
|
Criteria for interpreting different rock types
|
|
AMT apparent resistivity section of the left line of Dafengding tunnel (a) lithological anomaly classification profile (b)
|
|
High-density apparent resistivity profile at ZK68+507 (WS-037) for the left line of the Dafengding tunnel
|
|
High-density apparent resistivity profile at ZK68+907 (WS-038) for the left line of the Dafengding tunnel
|
|
High-density apparent resistivity profile at ZK69+627 (WS-039) for the left line of the Dafengding tunnel
|
|
High-density apparent resistivity profile at ZK69+977 (WS-040) for the left line of the Dafengding tunnel
|
|
High-density apparent resistivity profile at ZK70+712 (WS-041) for the left line of the Dafengding tunnel
|
[1] |
向鹏成, 杨斯迈, 袁永奇. 西部区域重大交通基础设施互联互通协同发展的挑战与推进路径[J]. 重庆大学学报:社会科学版, 2024, 30(6):26-40.
|
[1] |
Xiang P C, Yang S M, Yuan Y Q. Challenges and paths to coordinated development of regional mega-transportation infrastructure interconnection in the western region[J]. Journal of Chongqing University:Social Science Edition, 2024, 30(6):26-40.
|
[2] |
刘继国, 崔庆龙, 李丹妮, 等. 截至2023年底中国10 km以上特长公路隧道统计与分析[J]. 隧道建设, 2024, 44(1):189-198.
|
[2] |
Liu J G, Cui Q L, Li D N, et al. Statistics and analysis of super-long highway tunnels over 10 km in China by the end of 2023[J]. Tunnel Construction, 2024, 44(1):189-198.
|
[3] |
代绍述. 西部山区深埋特长公路隧道综合勘查技术研究[J]. 灾害学, 2019, 34(S1):91-95.
|
[3] |
Dai S S. Research on comprehensive survey technology of deep-buried and extra-long highway tunnels in western mountainous areas[J]. Journal of Catastrophology, 2019, 34(S1):91-95.
|
[4] |
陈子全, 寇昊, 杨文波, 等. 我国西南部山区隧道施工期支护结构力学行为特征案例分析[J]. 隧道建设, 2020, 40(6):800-812.
|
[4] |
Chen Z Q, Kou H, Yang W B, et al. Cases analysis of mechanical behavior characteristics of tunnel supporting structure in mountainous areas in southwest China[J]. Tunnel Construction, 2020, 40(6):800-812.
|
[5] |
李凯, 侯秋平, 邹杰, 等. 综合物探方法在复杂地质条件下公路隧道勘查中的应用[J]. 工程地球物理学报, 2024, 21(5):820-828.
|
[5] |
Li K, Hou Q P, Zou J, et al. Application of comprehensive geophysical methods in highway tunnel investigation under complex geological conditions[J]. Chinese Journal of Engineering Geophysics, 2024, 21(5):820-828.
|
[6] |
舒森, 王树栋, 李广, 等. 瞬变电磁法指导复杂地质隧道超前水平钻探应用[J]. 物探与化探, 2018, 42(6):1311-1316.
|
[6] |
Shu S, Wang S D, Li G, et al. The application of TEM to guiding advance exploration drilling of complex geological tunnel[J]. Geophysical and Geochemical Exploration, 2018, 42(6):1311-1316.
|
[7] |
张文鑫, 李勇, 李斌, 等. 西部山区公路隧道音频大地电磁正演研究[J]. 物探化探计算技术, 2018, 40(6):780-788.
|
[7] |
Zhang W X, Li Y, Li B, et al. Study on audio magnetotelluric forward of highway tunnel in mountainous area of western China[J]. Computing Techniques for Geophysical and Geochemical Exploration, 2018, 40(6):780-788.
|
[8] |
许广春. 广域电磁法在深埋隧道勘查中的应用研究[J]. 铁道工程学报, 2020, 37(2):1-5,16.
|
[8] |
Xu G C. Application research on the wide field electromagnetic method for deep-buried tunnel investigation[J]. Journal of Railway Engineering Society, 2020, 37(2):1-5,16.
|
[9] |
周竹生, 丰赟. 隧道勘查中的综合物探方法[J]. 地球物理学进展, 2011, 26(2):724-731.
|
[9] |
Zhou Z S, Feng Y. The comprehensive geophysical survey in tunnel exploration[J]. Progress in Geophysics, 2011, 26(2):724-731.
|
[10] |
黄小年, 郭高峰, 张本涛. 综合物探技术在隧道勘查中的应用研究[J]. 公路, 2022, 67(5):22-25.
|
[10] |
Huang X N, Guo G F, Zhang B T. Application and study of comprehensive geophysical prospecting methods in the geotechnical investigation of tunnel[J]. Highway, 2022, 67(5):22-25.
|
[11] |
何俊飞. 综合物探在新兴都斛铜矿床勘查中的应用[J]. 物探与化探, 2024, 48(2):375-381.
|
[11] |
He J F. Application of comprehensive geophysical prospecting in exploration of the Duhu copper deposit in Xinxing County[J]. Geophysical and Geochemical Exploration, 2024, 48(2):375-381.
|
[12] |
康耀, 杜安鹏. 综合物探技术在云南龙堡隧道地层勘查中的应用研究[J]. 工程地球物理学报, 2023, 20(4):446-453.
|
[12] |
Kang Y, Du A P. Research on the application of comprehensive geophysical techniques in stratigraphic survey of Longbao tunnel in Yunnan province[J]. Chinese Journal of Engineering Geophysics, 2023, 20(4):446-453.
|
[13] |
程小勇. 基于水文地质综合勘查的隧道导水特性研究[J]. 地下空间与工程学报, 2024, 20(4):1345-1356.
|
[13] |
Cheng X Y. Study on water diversion characteristics of tunnel based on hydrogeological comprehensive investigation[J]. Chinese Journal of Underground Space and Engineering, 2024, 20(4):1345-1356.
|
[14] |
阳映, 闫清华, 衣骏杰, 等. 综合物探技术在北京延庆松山隧道勘查中的应用[J]. 地质与勘探, 2021, 57(6):1374-1382.
|
[14] |
Yang Y, Yan Q H, Yi J J, et al. Application of integrated geophysical exploration technology to the survey of the Songshan tunnel in Yanqing,Beijing[J]. Geology and Exploration, 2021, 57(6):1374-1382.
|
[15] |
陈楠, 赵永辉, 王海, 等. 长大深埋隧道勘查中的综合地球物理方法应用研究[J]. 地球物理学进展, 2024, 39(6):2420-2431.
|
[15] |
Chen N, Zhao Y H, Wang H, et al. Application research of integrated geophysical methods in long and deeply-buried tunnel exploration[J]. Progress in Geophysics, 2024, 39(6):2420-2431.
|
[16] |
王品丰, 康世海, 孔凡涛, 等. 音频大地电磁在长大深埋隧道勘探中的研究与应用[J]. 物探化探计算技术, 2018, 40(1):95-101.
|
[16] |
Wang P F, Kang S H, Kong F T, et al. Research and application of audio magnetotelluric in deeply-buried tunnel exploration[J]. Computing Techniques for Geophysical and Geochemical Exploration, 2018, 40(1):95-101.
|
[17] |
刘波, 祁程, 张伟, 等. 吊脚楼隧道断裂构造识别与定位:来自音频大地电磁测深的证据[J]. 地质论评, 2021, 67(S1):3-4.
|
[17] |
Liu B, Qi C, Zhang W, et al. Identification and location of fracture sturcture in Diaojiaolou tunnel:Evidence from audio-frequency magnetotelluric sounding AMT survey[J]. Geological Review, 2021, 67(S1):3-4.
|
[18] |
肖洋, 于维刚, 何宇. 高密度电阻率法在余凯高速公路岩溶隧道浅埋段地质探测中的应用研究[J]. 现代隧道技术, 2019, 56(S2):700-705.
|
[18] |
Xiao Y, Yu W G, He Y. Study on the application of high density resistivity method in geological exploration of shallow buried section of Yukai Expressway Karst tunnel in Yu Kai Expressway[J]. Modern Tunnelling Technology, 2019, 56(S2):700-705.
|
[19] |
范祥泰, 张志厚, 苏建坤, 等. 改进电测深法探测山区深埋隧道隐伏构造[J]. 物探与化探, 2021, 45(3):793-799.
|
[19] |
Fan X T, Zhang Z H, Su J K, et al. Improved electric sounding method for detecting concealed structures in deep-buried tunnels in mountainous areas[J]. Geophysical and Geochemical Exploration, 2021, 45(3):793-799.
|
[20] |
夏时斌, 廖国忠, 邓国仕, 等. 高密度电法和音频大地电磁测深法在西南岩溶地区地下水勘探中的应用[J]. 物探与化探, 2024, 48(3):651-659.
|
[20] |
Xia S B, Liao G Z, Deng G S, et al. Application of high-density electrical resistivity tomography and audio magnetotellurics for groundwater exploration in the karst area in southwestern China[J]. Geophysical and Geochemical Exploration, 2024, 48(3):651-659.
|
[21] |
叶益信, 杜家明, 薛海军, 等. 高密度电法与音频大地电磁法在城市输水隧洞勘查中的应用[J]. 地球科学与环境学报, 2020, 42(6):767-775.
|
[21] |
Ye Y X, Du J M, Xue H J, et al. Application of multi-electrode resistivity method and audio-frequency magnetotelluric method in the investigation of urban water tunnel[J]. Journal of Earth Sciences and Environment, 2020, 42(6):767-775.
|
[1] |
WANG Yun-Yun, LAN Xue-Yi, GUO Dong, ZHANG Sha-Sha, DING Wen-Xiang, TAO Long, ZHANG Hui-Jie, ZHANG Yuan-Yuan, YE Lin, YOU Miao. Diagenesis and mineralization in Tongling and Fanchang areas, Anhui Province: Constrains from the integrated geophysical exploration study[J]. Geophysical and Geochemical Exploration, 2021, 45(3): 590-600. |
[2] |
Yu-Lu LI, Li-Juan XING, Zhan-Hong BAI, Zhi-Hua LIU, Zhen WANG. The application of comprehensive geophysical prospecting method to the exploration of the Yuejinshan iron deposit in Qinghai[J]. Geophysical and Geochemical Exploration, 2018, 42(5): 889-895. |
|
|
|
|