|
|
Application study of multi-layer foam composite microwave-absorbing materials in GPR antenna design |
YIN Yue-Meng1( ), WANG Cheng-Hao1, LI Shao-Long1, ZHANG-Zhao 1, XU-Fei 2 |
1. China Research Institute of Radiowave Propagation,Qingdao 266107,China 2. Shijiazhuang Tiedao University,Shijiazhuang 050043,China |
|
|
Abstract This study focuses on the application of microwave-absorbing materials in the design of time-domain pulsed ground-penetrating radar(GPR) antennae.First,this study analyzed the propagation mechanisms of electromagnetic waves inside and at the medium interface of microwave-absorbing materials.Second,this study applied multi-layer foam composite microwave-absorbing materials to antennae in various loading configurations.Third,based on the CST electromagnetic simulation software,this study compared parameters like waveform fidelity,antenna gain,and voltage standing wave ratio(VSWR) for antennae with different loading configurations.Fourth,this study performed systematic modeling and simulation for the transmitting antenna,receiving antenna,stratified ground,and subsurface targets in combination with a real-world application scenario.By examining the characteristics of the target echo signal under various loading configurations for antennae,this study determined the optimal loading configuration of multi-layer foam composite microwave-absorbing materials for GPR antennae.Using the optimal loading configuration, this study designed and fabricated a flat dipole antenna with a shielding shell.Finally,this study conducted field tests using the LTD-2600 GPR with this flat dipole antenna on the ground surface and at an elevated position,clearly revealing abnormal stratigraphic signals at a depth of 5.6 m.Therefore,this study can effectively guide the design and engineering applications of GPR antennae.
|
Received: 15 December 2024
Published: 22 July 2025
|
|
|
|
|
|
Schematic of the wave reflection and attenuation at the interface
|
|
Illustration of the simulation model
|
|
Tested electric parameter of the used absorption materials
|
|
Schematic diagram of the arrangement of absorbing materials
|
|
Curve of VSWR
|
|
Curve of Gain
|
|
E- field at 1.5 m in front of the antenna
|
|
Voltage at the port of receiving antenna(system simulation)
|
|
Pictures of antenna testing
|
|
Images of subsurface targets obtained through GPR radar
|
[1] |
刘顺华, 刘军民, 董星龙, 等. 电磁波屏蔽及吸波材料[M]. 2版. 北京: 化学工业出版社, 2014.
|
[1] |
Liu S H, Liu J M, Dong X L, et al. Electromagnetic wave shielding and absorbing materials[M]. 2nd ed. Beijing: Chemical Industry Press, 2014.
|
[2] |
戴维M. 波扎.微波工程[M].第三版. 北京: 电子工业出版社,2007:18-31.
|
[2] |
Pozar D M. Microwave engineering[M]. 3rd ed. Beijing: Publishing House of Electronics Industry,2007:18-31.
|
[3] |
席嘉彬. 高性能碳基电磁屏蔽及吸波材料的研究[D]. 杭州: 浙江大学, 2018.
|
[3] |
Xi J B. Study on high performance carbon-based electromagnetic shielding and absorbing materials[D]. Hangzhou: Zhejiang University, 2018.
|
[4] |
张家鸣. 提高地质雷达隧道衬砌质量检测效果的几点措施[J]. 隧道建设, 2014, 34(7):691-695.
|
[4] |
Zhang J M. Measures to improve effect tunnel lining testing by means of ground penetrating radar[J]. Tunnel Construction, 2014, 34(7):691-695.
|
[5] |
雷林源. 探地雷达应用中的几个基本问题[J]. 物探与化探, 1998, 22(6):408-414.
|
[5] |
Lei L Y. Some basic problems in the application of ground-penetration radar[J]. Geophysical and Geochemical Exploration, 1998, 22(6):408-414.
|
[6] |
李静, 曾昭发, 黄玲, 等. 三维探地雷达数值模拟中UPML边界研究[J]. 物探化探计算技术, 2010, 32(1):6-12,117.
|
[6] |
Li J, Zeng Z F, Huang L, et al. Study of UPML boundary for three dimensional GPR simulation[J]. Computing Techniques for Geophysical and Geochemical Exploration, 2010, 32(1):6-12,117.
|
[7] |
尹达, 辛国亮, 孙学超, 等. 实时三维探地雷达关键技术的设计与实现[J]. 物探与化探, 2024, 48(1):194-200.
|
[7] |
Yin D, Xin G L, Sun X C, et al. Design and implementation of key technologies of real-time 3D ground penetrating radar[J]. Geophysical and Geochemical Exploration, 2024, 48(1) :194-200.
|
[8] |
姜婷婷. 探地雷达系统天线的仿真设计[D]. 成都: 电子科技大学, 2019.
|
[8] |
Jiang T T. Simulation design of antenna for ground penetrating radar system[D]. Chengdu: University of Electronic Science and Technology of China, 2019.
|
[9] |
张小博, 白大为, 高保屯, 等. 一种低频探地雷达天线屏蔽装置实验研究[J]. 物探与化探, 2017, 41(6):1255-1261.
|
[9] |
Zhang X B, Bai D W, Gao B T, et al. Experimental research on a shielding device of low frequency ground penetrating radar antenna[J]. Geophysical and Geochemical Exploration, 2017, 41(6):1255-1261.
|
[10] |
程昌彦. 冲击型探地雷达的设计与研究[D]. 荆州: 长江大学, 2017.
|
[10] |
Cheng C Y. Design and research of impact ground penetrating radar[D]. Jingzhou: Yangtze University, 2017.
|
[11] |
侯志星. 地质雷达超前探测在煤矿的应用[J]. 矿业装备, 2024(2):8-10.
|
[11] |
Hou Z X. Application of geological radar advanced detection in coal mine[J]. Mining Equipment, 2024(2):8-10.
|
[12] |
刘立业, 粟毅, 毛钧杰. 具有屏蔽腔和吸波材料的探地雷达天线的FDTD分析[J]. 电波科学学报, 2006, 21(3):422-427.
|
[12] |
Liu L Y, Su Y, Mao J J. FDTD analysis of ground penetrating radar antennas with shields and absorbers[J]. Chinese Journal of Radio Science, 2006, 21(3):422-427.
|
[13] |
王友成, 张锋, 纪奕才, 等. 探地雷达阻性加载天线的应用研究[J]. 电波科学学报, 2016, 31(3):516-521.
|
[13] |
Wang Y C, Zhang F, Ji Y C, et al. Analysis on resistive loaded antenna for GPR application[J]. Chinese Journal of Radio Science, 2016, 31(3):516-521.
|
[14] |
尹德, 叶盛波, 刘晋伟, 等. 一种用于高速公路探地雷达的新型时域超宽带TEM喇叭天线[J]. 雷达学报, 2017, 6(6):611-618.
|
[14] |
Yin D, Ye S B, Liu J W, et al. Novel time-domain Ultral-wide band TEM Horn antenna for highway GPR applications[J]. Journal of Radars, 2017, 6(6) :611-618.
|
[15] |
杨睿, 薛亚东, 杨健. 雷达探测隧道壁后空洞的现场验证及空洞影响分析[J]. 隧道建设, 2017, 37(2):185-191.
|
[15] |
Yang R, Xue Y D, Yang J. In-situ verification of voids behind tunnel lining detected by ground penetrating radar and numerical analysis of influence of voids on tunnel structure[J]. Tunnel Construction, 2017, 37(2):185-191.
|
[16] |
祁飞翔. 用于探地雷达的超宽带天线研究[D]. 哈尔滨: 哈尔滨工业大学, 2021.
|
[16] |
Qi F X. Research on ultra-wideband antenna for ground penetrating radar[D]. Harbin: Harbin Institute of Technology, 2021.
|
[17] |
朱家松, 雷占占, 罗享寰. 面向基础设施的三维探地雷达属性成像及信息可视化研究[J]. 隧道建设:中英文, 2023, 43(10):1702-1711.
|
[17] |
Zhu J S, Lei Z Z, Luo X H. Three-dimensional ground penetrating radar attribute imaging and information visualization for urban infrastructure[J]. Tunnel Construction, 2023, 43(10):1702-1711.
|
[18] |
钟世航, 孙宏志, 王荣, 等. 隧道掌子面前方地质预报的进展[J]. 隧道建设, 2007, 27(4):7-11.
|
[18] |
Zhong S H, Sun H Z, Wang R, et al. Progress of geology forecasting ahead of tunnel face by means of geophysical technology[J]. Tunnel Construction, 2007, 27(4):7-11.
|
|
|
|