|
|
A Marchenko theory-based method for internal multiple suppression |
LIAO Zhen( ), MA Ji-Tao, CHEN Xiao-Hong, LI Wen-Jin |
College of Geophysics,China University of Petroleum (Beijing),Beijing 102249,China |
|
|
Abstract Seismic data processing reveals that internal multiples exhibit highly complex formation mechanisms,making their accurate identification and effective suppression a persistent challenge in geophysical exploration.Traditional methods for internal multiple suppression frequently require manual identification of subsurface reflection interfaces,making them difficult to apply to complex underground medium structures.Moreover,these methods are not only computationally cumbersome but also typically ensure only temporal and positional consistency when predicting internal multiples.The amplitude often deviates from observed values,requiring adaptive matching subtraction algorithms for effective suppression.This study developed an internal multiple suppression method based on Marchenko theory.Specifically,the wavefield relationships between the focusing function and Green’s function were constructed using the convolution and correlation reciprocity theorem of the Green’s function during data processing.The Green’s function was then solved using the focusing function,yielding either multiples or primaries constructed from the Green’s function.This method requires only the background velocity or the original data as operators during the iterative multidimensional correlation and convolution process,rendering it simple and computationally efficient. This study constructed an expression for the primary wave field using the Green’s function and the Marchenko equation.The tests using the SMAART model and actual data from the Gulf of Mexico demonstrate that the Marchenko method can effectively suppress internal multiples under the conditions of complex subsurface media.The iterative process requires no velocity information,providing significant advantages over conventional methods and great potential for application in complex underground environments where layers are difficult to distinguish.
|
Received: 16 May 2024
Published: 26 February 2025
|
|
|
|
|
|
Reference medium and real medium wave fields
|
|
The employment of Green’s functions for the construction of the primary wavefield
|
|
Results of internal multiple elimination in a simple dipping layer model a—single-shot data;b—the result of eliminating internal multiple in a single shot;c—the zero-offset profile of the model;d—the zero-offset profile after eliminating internal multiple
|
|
Iterative calculation results for the M2m term a—the M2m term after twice iterations;b—the M2m term after fource iterations;c—the M2m term after tenth iterations
|
|
Iterative calculation results of the primary wave Rt a—Rt after twice iterations;b—Rt after fourth iterations;c—Rt after tenth iterations
|
|
Deconvolution spectra of different wavelets in SMAART single-shot data a—original single shot data spectrum;b—15 Hz ricker wavelet deconvolution spectrum;c—10 Hz ricker wavelet deconvolution spectrum;d—20 Hz ricker wavelet deconvolution spectrum
|
|
Results of SMAART single-shot data after internal multiple elimination a—single-shot data;b—the result of eliminating internal multiple in a single shot;c—eliminatd internal multiples
|
figure 7 between 2.8 s and 5.6 s a—single-shot data between 2.8 to 5.6 s;b—the result of eliminating internal multiple between 2.8 to 5.6 s;c—eliminatd internal multiples between 2.8 to 5.6 s ">
|
Zoomed section of figure 7 between 2.8 s and 5.6 s a—single-shot data between 2.8 to 5.6 s;b—the result of eliminating internal multiple between 2.8 to 5.6 s;c—eliminatd internal multiples between 2.8 to 5.6 s
|
|
SMAART zero-offset profile a—zero-offset profile of the original data;b—zero-offset profile after eliminating internal multiple;c—zero-offset profile of the eliminated internal multiple
|
|
Results of Gulf of Mexico single-shot data after internal multiple elimination a—single shot data;b—internal multiple elimination of single shot data
|
|
Zero-offset profile of internal multiple elimination in the Gulf of Mexico a—zero-offset profile of original data; b—zero-offset profile after eliminating internal multiple
|
[1] |
Ryu J V. Decomposition(DECOM) approach applied to wave field analysis with seismic reflection records[J]. Geophysics, 1982, 47(6):869-883.
|
[2] |
Hampson D. Inverse velocity stacking for multiple elimination[C]// SEG Technical Program Expanded Abstracts,1986.
|
[3] |
张亚伟, 严加永, 刘振东, 等. 基于F-K和Radon变换的多次波衰减方法[J]. 中国地质调查, 2015, 2(3):22-27.
|
[3] |
Zhang Y W, Yan J Y, Liu Z D, et al. Multiples attenuation approach by F-K and radon transform[J]. Geological Survey of China, 2015, 2(3):22-27.
|
[4] |
White R E. A multichannel method of multiple attenuation based on hyperbolic moveout curves[C]// 50th EAEG meeting,Extended Abstracts,1988:1-22.
|
[5] |
胡天跃, 王润秋, White R E. 地震资料处理中的聚束滤波方法[J]. 地球物理学报, 2000, 43(1):105-115.
|
[5] |
Hu T Y, Wang R Q, White R E. Beamforming in seismic data processing[J]. Chinese Journal of Geophysics, 2000, 43(1):105-115.
|
[6] |
Berkhout A J. Pushing the limits of seismic imaging,Part I:Prestack migration in terms of double dynamic focusing[J]. Geophysics, 1997, 62(3):937.
|
[7] |
Berkhout A J, Verschuur D J, Romijn R. Reconstruction of seismic data using the focal transformation[C]// SEG Technical Program Expanded Abstracts 2004,Society of Exploration Geophysicists,2004.
|
[8] |
Hadidi M T, Verschuur D J. Removal of internal multiples-field data examples[C]//Geneva:59th EAGE Conference & Exhibition. European Association of Geoscientists & Engineers,1997.
|
[9] |
Kelamis P G, Erickson K E, Verschuur D J, et al. Velocity-independent redatuming:A new approach to the near-surface problem in land seismic data processing[J]. The Leading Edge, 2002, 21(8):730-735.
|
[10] |
王成祥, 赵波, 张关泉, 等. 地下复杂介质地震处理中的CFP技术[J]. 地球物理学进展, 2003, 18(1):30-34.
|
[10] |
Wang C X, Zhao B, Zhang G Q, et al. The CFP technology in seismic processing of complex media[J]. Progress in Geophysics, 2003, 18(1):30-34.
|
[11] |
王锡文. 利用共聚焦点方法消除复杂的近地表效应[J]. 勘探地球物理进展, 2004, 27(4):260-265.
|
[11] |
Wang X W. Common focus-point method for elimination of complex near surface effect[J]. Progress in Exploration Geophysics, 2004, 27(4):260-265.
|
[12] |
辛可锋, 王华忠, 马在田, 等. 共聚焦点层析速度建模方法[J]. 石油物探, 2005, 44(4):329-333,15-16.
|
[12] |
Xin K F, Wang H Z, Ma Z T, et al. Tomographic velocity modeling based on CFP technology[J]. Geophysical Prospecting for Petroleum, 2005, 44(4):329-333,15-16.
|
[13] |
李振春, 艾秀娟. 利用CFP技术解决复杂近地表问题综述[J]. 地球物理学进展, 2008, 23(2):464-469.
|
[13] |
Li Z C, Ai X J. Review of using CFP technology to resovle complex near surface problems[J]. Progress in Geophysics, 2008, 23(2):464-469.
|
[14] |
马继涛, Sen Mrinal K, 陈小宏, 等. 海底电缆多次波压制方法研究[J]. 地球物理学报, 2011, 54(11):2960-2966.
|
[14] |
Ma J T, Sen M K, Chen X H, et al. OBC multiple attenuation technique using SRME theory[J]. Chinese Journal of Geophysics, 2011, 54(11):2960-2966.
|
[15] |
包培楠, 王孝, 谢俊法, 等. 基于迭代反演的层间多次波压制方法[J]. 地球物理学报, 2021, 64(6):2061-2072.
|
[15] |
Bao P N, Wang X, Xie J F, et al. Internal multiple suppression method based on iterative inversion[J]. Chinese Journal of Geophysics, 2021, 64(6):2061-2072.
|
[16] |
Jakubowicz H. Wave equation prediction and removal of interbed multiples[C]// SEG Technical Program Expanded Abstracts 1998.Society of Exploration Geophysicists,1998.
|
[17] |
Berkhout A J, Verschuur D J. Removal of internal multiples with the common-focus-point (CFP) approach:Part 1—Explanation of the theory[J]. Geophysics, 2005, 70(3):V45-V60.
|
[18] |
Ikelle L T. A construct of internal multiples from surface data only:The concept of virtual seismic events[J]. Geophysical Journal International, 2006, 164(2):383-393.
|
[19] |
吴静, 吴志强, 胡天跃, 等. 基于构建虚同相轴压制地震层间多次波[J]. 地球物理学报, 2013, 56(3):985-994.
|
[19] |
Wu J, Wu Z Q, Hu T Y, et al. Seismic internal multiple attenuation based on constructing virtual events[J]. Chinese Journal of Geophysics, 2013, 56(3):985-994.
|
[20] |
Araújo F V, Weglein A B, Carvalho P M, et al. Inverse scattering series for multiple attenuation:An example with surface and internal multiples[C]// SEG Technical Program Expanded Abstracts 1994.Society of Exploration Geophysicists,1994.
|
[21] |
Weglein A B, Gasparotto F A, Carvalho P M, et al. An inverse-scattering series method for attenuating multiples in seismic reflection data[J]. Geophysics, 1997, 62(6):1975-1989.
|
[22] |
Malcolm A E, de Hoop M V. A method for inverse scattering based on the generalized Bremmer coupling series[J]. Inverse Problems, 2005, 21(3):1137-1167.
|
[23] |
Löer K, Curtis A, Angelo Meles G.Relating source-receiver interferometry to an inverse-scattering series to derive a new method to estimate internal multiples[J]. Geophysics, 2016, 81(3):Q27-Q40.
|
[24] |
金德刚, 常旭, 刘伊克. 逆散射级数法预测层间多次波的算法改进及其策略[J]. 地球物理学报, 2008, 51(4):1209-1217.
|
[24] |
Jin D G, Chang X, Liu Y K. Algorithm improvement and strategy of internal multiples prediction based on inverse scattering series method[J]. Chinese Journal of Geophysics, 2008, 51(4):1209-1217.
|
[25] |
李翔, 胡天跃. 逆散射级数法去除自由表面多次波[J]. 地球物理学报, 2008, 52(6):1633-1640.
|
[25] |
Li X, Hu T Y. Surface-related multiple removal with inverse scattering series method[J]. Chinese Journal of Geophysics, 2008, 52(6):1633-1640.
|
[26] |
陈小宏, 刘华锋. 预测多次波的逆散射级数方法与SRME方法及比较[J]. 地球物理学进展, 2012, 27(3):1040-1050.
|
[26] |
Chen X H, Li H F. Comparison between inverse scattering series method and SRME method in free surface related multiple prediction[J]. Progress in Geophysics, 2012, 27(3):1040-1050.
|
[27] |
叶月明, 姚根顺, 赵昌垒, 等. 利用地震干涉法衰减海底相关层间多次波[J]. 石油地球物理勘探, 2015, 50(2):225-231.
|
[27] |
Ye Y M, Yao G S, Zhao C L, et al. Sea bottom peg-leg multiple suppression based on seismic interferometry[J]. Oil Geophysical Prospecting, 2015, 50(2):225-231.
|
[28] |
杨金龙, 朱立华. 逆散射级数层间多次波压制方法及其应用[J]. 石油物探, 2018, 57(6):853-861.
|
[28] |
Yang J L, Zhu L H. Inverse scattering series internal multiple attenuation method and its application[J]. Geophysical Prospecting for Petroleum, 2018, 57(6):853-861.
|
[29] |
毕丽飞, 秦宁, 李钟晓, 等. 应用逆散射级数波场预测和2D卷积盲分离压制层间多次波[J]. 石油地球物理勘探, 2020, 55(3):521-529.
|
[29] |
Bi L F, Qing N, Li Z X, et al. Wavefield prediction with inverse scattering series and 2D blind separation of convolved mixtures for suppressing internal multiples[J]. Oil Geophysical Prospecting, 2020, 55(3):521-529.
|
[30] |
Rose J H. Single-sided autofocusing of sound in layered materials[J]. Inverse Problems, 2002, 18(6):1923-1934.
|
[31] |
Broggini F, Snieder R. Connection of scattering principles:A visual and mathematical tour[J]. European Journal of Physics, 2012, 33(3):593-613.
|
[32] |
Broggini F, Snieder R, Wapenaar K. Focusing the wavefield inside an unknown 1D medium:Beyond seismic interferometry[J]. Geophysics, 2012, 77(5):A25-A28.
|
[33] |
Wapenaar K, Broggini F, Slob E, et al. Three-dimensional single-sided Marchenko inverse scattering,data-driven focusing,Green's function retrieval,and their mutual relations[J]. Physical Review Letters, 2013, 110(8):084301.
|
[34] |
Wapenaar K, Thorbecke J, van der Neut J, et al. Marchenko imaging[J]. Geophysics, 2014, 79(3):WA39-WA57.
|
[35] |
Slob E, Wapenaar K, Broggini F, et al. Seismic reflector imaging using internal multiples with Marchenko-type equations[J]. Geophysics, 2014, 79(2):S63-S76.
|
[36] |
Meles G A, Löer K, Ravasi M, et al. Internal multiple prediction and removal using Marchenko autofocusing and seismic interferometry[J]. Geophysics, 2015, 80(1):A7-A11.
|
[37] |
van der Neut J, Wapenaar K. Adaptive overburden elimination with the multidimensional Marchenko equation[J]. Geophysics, 2016, 81(5):T265-T284.
|
[38] |
Zhang L L, Staring M. Marchenko scheme based internal multiple reflection elimination in acoustic wavefield[J]. Journal of Applied Geophysics, 2018,159:429-433.
|
[1] |
ZHENG Duo-Ming, WANG De-Ying, WU Yu-Bing, KOU Long-Jiang, CHEN Yang-Yang, JIN Bao-Zhong. Application of compressed sensing-based seismic data regularization technology in the Tarim block[J]. Geophysical and Geochemical Exploration, 2025, 49(1): 189-199. |
[2] |
PEI Yun-Long, YANG Jin-Long, ZHOU Yan, SONG Hui. Application of an internal multiples suppression technique combined with modeling method and adaptive matching subtraction:A case study of the Yubei area in the Tarim Basin[J]. Geophysical and Geochemical Exploration, 2025, 49(1): 41-51. |
|
|
|
|