|
|
Microtremor survey-based investigation of deep geothermal- and water-controlling structures in the Salt Lake geothermal field, Yuncheng City, Shanxi Province, China |
WANG He-Yu1( ), WU Guo-Peng2( ), CHEN Guo-Xiong3, CHAI Jian-Zhou4, MAO Jie4, WANG De-Tao3 |
1. Shanxi Provincial Institute of Geophysical and Geochemical Exploration, Yuncheng 044004, China 2. Department of Physics and Electronic Engineering, Yuncheng University, Yuncheng 044000, China 3. State Key Laboratory of Geological Processes and Mineral Resources, China University of Geosciences (Wuhan), Wuhan 430074, China 4. The 214 Geological Team of Shanxi Provincial Geological Prospecting Bureau, Yuncheng 044000, China |
|
|
Abstract The Salt Lake geothermal field in Yuncheng City, Shanxi Province, China lies beneath a densely populated urban area, posing significant challenges to further geothermal exploration and extraction. Based on the distribution of geothermal gradients in the geothermal field, which are higher in the southwest and lower in the northeast, a NE-trending microtremor survey profile was arranged in the southern part of Yuncheng City, aimed at investigating the deep geothermal reservoir structure and NW-trending structures in the geothermal field. The 2D velocity structure profile reveals a pronounced low-velocity anomaly in the eastern part, which is supposed to be induced by the fault fracture zone formed by multiple NW-striking tensional faults. Spatially, this concealed fault zone roughly corresponds to the low-geothermal gradient anomaly in the northeastern Salt Lake geothermal field, suggesting that this fault fracture zone might facilitate the rapid infiltration of cold surface water, thereby lowering the temperature of deep rocks in the northeastern part, leading to the formation of a large-scale low-temperature anomaly zone. Additionally, the faults identified by the microtremor survey can be traceable and confirmed in a controlled source reflection seismic profile in the study area, demonstrating the complementary nature of the two methods. This study further reveals the deep geothermal structures of the Salt Lake geothermal field based on previous efforts. This study provides more valuable bases and guidance for future exploration and resource evaluation of geothermal fields in the region while also demonstrating the effectiveness and superiority of the microtremor survey method in research on urban geothermal resources.
|
Received: 09 August 2024
Published: 26 February 2025
|
|
|
|
|
|
Geological and tectonic background of the study area
|
|
Geological and geophysical exploration work within the Salt Lake geothermal field
|
|
Layout of the microtremor station points for the SPAC method
|
|
Results of the consistency test
|
|
Micro seismic exploration results of geothermal fields in the Salt Lake geothermal field,Yuncheng city
|
|
The post-stack migrated time section from the reflection seismic profile D1 with the geological interpre-tation in the north of the Salt lake geothermal field
|
[1] |
庞忠和, 胡圣标, 汪集旸. 中国地热能发展路线图[J]. 科技导报, 2012, 30(32): 18-24.
|
[1] |
Pang Z H, Hu S B, Wang J Y. A roadmap to geothermal energy development in China[J]. Science & Technology Review, 2012, 30(32): 18-24.
|
[2] |
郭森, 马致远, 李劲彬, 等. 我国地热供暖的现状及展望[J]. 西北地质, 2015, 48(4): 204-209.
|
[2] |
Guo S, Ma Z Y, Li J B, et al. Status and prospects of geothermal heating in China[J]. Northwestern Geology, 2015, 48(4): 204-209.
|
[3] |
刑集善. 山西省西南部断陷盆地地热综合物探成果研究报告[R]. 山西省地质矿产局物理探矿队,1988.
|
[3] |
Xing J S. Research Report on Comprehensive Geothermal Exploration Results in the Southwest Fault Basin of Shanxi Province[R]. Geophysical Exploration Team of Shanxi Provincial Bureau of Geology and Mineral Resources,1988.
|
[4] |
薛鹏, 薛铭, 薛晓光. 运城地热利用现状与可持续发展思路[C]// 2016中国环境科学学会学术年会论文集,2016:6.
|
[4] |
Xue P, Xue M, Xue X G. Current Status and Sustainable Development Ideas of Geothermal Utilization in Yuncheng[C]// 2016 Proceedings of the Academic Annual Conference of the Chinese Society of Environmental Sciences,2016:6.
|
[5] |
裴发根, 张小博, 王绪本, 等. 综合地球物理勘探在齐齐哈尔地区低温地热系统调查中的应用——以HLD1井为例[J]. 地球物理学进展, 2021, 36(4): 1432-1442.
|
[5] |
Pei F G, Zhang X B, Wang X B, et al. Application in geothermal survey of low temperature system by integrated geophysical exploration in the Qiqihar area: Take the well HLD1 as an example[J]. Progress in Geophysics, 2021, 36(4): 1432-1442.
|
[6] |
邹鹏飞, 徐雪球, 程远志, 等. 长三角地区中深层地热资源勘查技术创新与应用[J]. 科技导报, 2023, 41(12): 46-65.
|
[6] |
Zou P F, Xu X Q, Cheng Y Z, et al. Innovation and application of geothermal resources exploration technology in the mid-deep layers of the Yangtze River Delta[J]. Science & Technology Review, 2023, 41(12): 46-65.
|
[7] |
张昭, 殷全增, 张龙飞, 等. 综合物探技术在深部碳酸盐岩热储探测中的应用研究——以雄安新区为例[J]. 物探与化探, 2023, 47(4): 926-935.
|
[7] |
Zhang Z, Yin Q Z, Zhang L F, et al. Application of the integrated geophysical exploration technology in the exploration of deep carbonate geothermal reservoirs: A case study of the Xiongan new area[J]. Geophysical and Geochemical Exploration, 2023, 47(4): 926-935.
|
[8] |
王凯, 张杰, 白大为, 等. 雄安新区地热地质模型探究: 来自地球物理的证据[J]. 中国地质, 2021, 48(5): 1453-1468.
|
[8] |
Wang K, Zhang J, Bai D W, et al. Geothermal-geological model of Xiongan new area: Evidence from geophysics[J]. Geology in China, 2021, 48(5): 1453-1468.
|
[9] |
王亚辉, 张茂省, 师云超, 等. 基于综合物探的城市地下空间探测与建模[J]. 西北地质, 2019, 52(2): 83-94.
|
[9] |
Wang Y H, Zhang M S, Shi Y C, et al. Precise detection and modeling of urban underground space based on integrated geophysical exploration[J]. Northwestern Geology, 2019, 52(2): 83-94.
|
[10] |
田宝卿, 丁志峰. 微动探测方法研究进展与展望[J]. 地球物理学进展, 2021, 36(3): 1306-1316.
|
[10] |
Tian B Q, Ding Z F. Review and prospect prediction for microtremor survey method[J]. Progress in Geophysics, 2021, 36(3): 1306-1316.
|
[11] |
张文文, 张永谦, 黄跃鹏, 等. 地震背景噪声成像技术研究进展与展望[J]. 地球物理学进展, 2022, 37(1): 125-141.
|
[11] |
Zhang W W, Zhang Y Q, Huang Y P, et al. Research progress and prospect of seismic ambient noise tomography[J]. Progress in Geophysics, 2022, 37(1): 125-141.
|
[12] |
应恒成, 李洪强, 张玉敏, 等. 基于SPAC法探测松科二井深层地热储水构造[J]. 地球学报, 2022, 43(6): 909-916.
|
[12] |
Ying H C, Li H Q, Zhang Y M, et al. Application of SPAC method to survey deep geothermal water storage structures in SK-2[J]. Acta Geoscientica Sinica, 2022, 43(6): 909-916.
|
[13] |
Xu P F, Ling S Q, Li C J, et al. Mapping deeply-buried geothermal faults using microtremor array analysis[J]. Geophysical Journal International, 2012, 188(1): 115-122.
|
[14] |
Tian B Q, Xu P F, Ling S Q, et al. Application effectiveness of the microtremor survey method in the exploration of geothermal resources[J]. Journal of Geophysics and Engineering, 2017, 14(5): 1283-1289.
|
[15] |
董耀, 李光辉, 高鹏举, 等. 微动勘查技术在地热勘探中的应用[J]. 物探与化探, 2020, 44(6): 1345-1351.
|
[15] |
Dong Y, Li G H, Gao P J, et al. The application of fretting exploration technology in the exploration of middle and deep clean energy[J]. Geophysical and Geochemical Exploration, 2020, 44(6): 1345-1351.
|
[16] |
陈昌昕, 严加永, 周文月, 等. 地热地球物理勘探现状与展望[J]. 地球物理学进展, 2020, 35(4): 1223-1231.
|
[16] |
Chen C X, Yan J Y, Zhou W Y, et al. Status and prospects of geophysical method used in geothermal exploration[J]. Progress in Geophysics, 2020, 35(4): 1223-1231.
|
[17] |
Okada H, Suto K. The microtremor survey method[M].Society of Exploration Geophysicists, 2003.
|
[18] |
李广才, 李培, 姜春香, 等. 我国城市地球物理勘探方法应用进展[J]. 地球物理学进展, 2023, 38(4): 1799-1814.
|
[18] |
Li G C, Li P, Jiang C X, et al. Advances of the application of urban geophysical exploration methods in China[J]. Progress in Geophysics, 2023, 38(4): 1799-1814.
|
[19] |
邢作云, 赵斌, 涂美义, 等. 汾渭裂谷系与造山带耦合关系及其形成机制研究[J]. 地学前缘, 2005, 12(2): 247-262.
|
[19] |
Xing Z Y, Zhao B, Tu M Y, et al. The formation of the Fenwei rift valley[J]. Earth Science Frontiers, 2005, 12(2): 247-262.
|
[20] |
Zhao G C, Sun M, Wilde S A, et al. Late Archean to Paleoproterozoic evolution of the North China Craton: Key issues revisited[J]. Precambrian Research, 2005, 136(2): 177-202.
|
[21] |
Chen G D. On the geotectonic nature of the Fen-Wei rift system[J]. Tectonophysics, 1987, 143(1-3): 217-223.
|
[22] |
王同和. 晋陕地区地质构造演化与油气聚集[J]. 华北地质矿产杂志, 1995(3): 283-398.
|
[22] |
Wang T H. Evolutionary characteristics of geological structure and oil-gas accumulation in Shanxi-Shaanxi area[J]. North China Journal of Geology and Mineral Resources, 1995(3): 283-398.
|
[23] |
齐玥, 罗金海, 巫嘉德, 等. 华北中南部蚕坊和孤峰山花岗闪长岩体的地球化学特征和Sr-Nd-Pb同位素组成[J]. 岩石学报, 2016, 32(7): 2015-2028.
|
[23] |
Qi Y, Luo J H, Wu J D, et al. Geochemical and Sr-Nd-Pb isoto-pic composition of the Canfang and Gufengshan granodiorite plutons in central-southern North China[J]. Acta Petrologica Sinica, 2016, 32(7): 2015-2028.
|
[24] |
闫纪元. 运城盆地及北侧孤山晚新生代构造—沉积与隆升—剥蚀过程研究[D]. 北京: 中国地质科学院, 2021.
|
[24] |
Yan J Y. Study on late Cenozoic tectonic-sedimentary and uplift-erosion processes in Yuncheng Basin and Gushan on its north side[D]. Beijing: Chinese Academy of Geological Sciences, 2021.
|
[25] |
孙建英. 运城盆地及邻区重磁力异常成因研究[D]. 西安: 西安石油大学, 2016.
|
[25] |
Sun J Y. Study on the causes of gravity and magnetic anomalies in Yuncheng basin and its adjacent areas[D]. Xi’an: Xi’an Shiyou University, 2016.
|
[26] |
赵俊峰, 盛双占, 王栋, 等. 临汾—运城盆地上古生界演化、改造及油气资源潜力分析[J]. 地质论评, 2019, 65(1): 168-180.
|
[26] |
Zhao J F, Sheng S Z, Wang D, et al. Analysis on evolution, modification and hydrocarbon resources potential of the upper Paleozoic in the Linfen—Yuncheng Basin[J]. Geological Review, 2019, 65(1): 168-180.
|
[27] |
徐继山, 庄会栋, 唐东旗, 等. 运城盆地地裂缝特征及机理分析[J]. 地质灾害与环境保护, 2010, 21(2): 97-100.
|
[27] |
Xu J S, Zhuang H D, Tang D Q, et al. Characteristic and mechanism analysis of ground fissures in Yuncheng basin[J]. Journal of Geological Hazards and Environment Preservation, 2010, 21(2): 97-100.
|
[28] |
赵俊彦, 王海刚, 卢全中, 等. 运城盆地和峨眉台地地裂缝基本特征[J]. 中国地质灾害与防治学报, 2018, 29(6): 58-67.
|
[28] |
Zhao J Y, Wang H G, Lu Q Z, et al. Basic features of ground fissures in Yuncheng Basin and Emei Platform[J]. The Chinese Journal of Geological Hazard and Control, 2018, 29(6): 58-67.
|
[29] |
李壮, 冯志强, 侯建斌, 等. 山西省地热资源规律及其地质背景研究[J]. 地质与勘探, 2023, 59(2): 353-376.
|
[29] |
Li Z, Feng Z Q, Hou J B, et al. The law of geothermal resources in Shanxi Province and its geological background[J]. Geology and Exploration, 2023, 59(2): 353-376.
|
[30] |
司庆红, 曾威, 刘行, 等. 临汾—运城盆地氦气富集要素及成藏条件[J]. 西北地质, 2023, 56(1): 129-141.
|
[30] |
Si Q H, Zeng W, Liu X, et al. Analysis of helium enrichment factors and reservoir forming conditions in Linfen-Yuncheng Basin[J]. Northwestern Geology, 2023, 56(1): 129-141.
|
[31] |
李强. 运城市地热水水化学特征及评价研究[J]. 水利与建筑工程学报, 2015, 13(5): 127-130, 184.
|
[31] |
Li Q. Hydrochemistry and evaluation of geothermal water in Yuncheng[J]. Journal of Water Resources and Architectural Engineering, 2015, 13(5): 127-130, 184.
|
[32] |
李成城. 运城盆地高氟地下咸水成因机制研究[D]. 武汉: 中国地质大学, 2018.
|
[32] |
Li C C. Study on genetic mechanism of high fluorine groundwater in Yuncheng basin[D]. Wuhan: China University of Geosciences, 2018.
|
[33] |
Aki K. Space and time spectra of stationary stochastic waves, with special reference to microtremors[J]. Bulletin of the Earthquake Research Institute, 1957,35:415-456.
|
[34] |
Ling S Q. Research on the estimation of phase velocities of surface waves in microtremors[D]. Sapporo: Hokkaido University,1994.
|
[35] |
郭春杉. 运城盆地主要断裂活动性及其相关块体变形特征研究[D]. 北京: 中国地震局地震预测研究所, 2019.
|
[35] |
Guo C S. Study on main fault activity and deformation characteristics of related blocks in Yuncheng basin[D]. Beijing: Institute of Earthquake Prediction, China Earthquake Administration, 2019.
|
[36] |
金刚. 山西运城盆地新生代沉积—构造演化研究[D]. 西安: 长安大学, 2020.
|
[36] |
Jin G. Study on Cenozoic sedimentary-tectonic evolution in Yuncheng basin, Shanxi Province[D]. Xi’an: Changan University, 2020.
|
[37] |
易锦俊. 山西地堑系活动断裂与地震、地裂缝灾害研究[D]. 西安: 长安大学, 2008.
|
[37] |
Yi J J. Study on active faults and earthquake and ground fissure disasters in Shanxi graben system[D]. Xi’an: Changan University, 2008.
|
[38] |
刘义. 山前断裂上盘地裂缝群发机制研究——以运城盆地夏县地裂缝为例[D]. 西安: 长安大学, 2014.
|
[38] |
Liu Y. Study on the mechanism of ground fissures in footwall of piedmont fault:A case study of ground fissures in Xiaxian County, Yuncheng Basin[D]. Xi’an: Changan University, 2014.
|
[1] |
ZHANG Ji-Wei, TAN Hui. Quasi-two-dimensional joint inversion of the data from the controlled source audio-frequency magnetotellurics and the microtremor survey[J]. Geophysical and Geochemical Exploration, 2024, 48(4): 1094-1102. |
[2] |
HAN Shu-He, PEI Qiu-Ming, XU Jian, SONG Zhi-Yong, MO Hai-Bin. Application of comprehensive geophysical prospecting in the exploration of geothermal resources in the Linjiadi area, Aohan Banner, Inner Mongolia[J]. Geophysical and Geochemical Exploration, 2024, 48(4): 962-970. |
|
|
|
|