|
|
A comprehensive fluid identification method for carbonate reservoirs considering pore shapes: A case study of the fourth member of the Ordovician Majiagou Formation,Ordos Basin |
WANG Yong-Gang1,2( ), YAO Zong-Hui1,2, YANG Qi-Yu3,4, LI Jing-Ye3,4, SONG Wei3,4 |
1. Research Institute of Exploration and Development,Changqing Oilfield Company,PetroChina,Xi'an 710018,China 2. National Engineering Laboratory for Exploration and Development of Low-Permeability Oil & Gas Fields,Xi'an 710018,China 3. State Key Laboratory of Petroleum Resources and Prospecting,Beijing 102249,China 4. College of Geophysics,China University of Petroleum(Beijing),Beijing 102249,China |
|
|
Abstract The dolomite reservoirs of the fourth member of the Majiagou Formation in the Ordos Basin are characterized by thin layers,tightness,complex pore shapes,strong heterogeneity,and relatively weak seismic responses.The mechanisms behind the seismic prediction of the reservoirs remains uncertain, making fluid identification challenging.Traditional geophysical methods based on a single attribute fail to accurately predict fluids.Therefore,by comprehensively accounting for the pore shapes and connectivity,this study proposed a new fluid identification method using petrophysical modeling and analysis,as well as wave theory-based prestack AVO inversion,frequency-dependent AVO inversion of fluid factors,and probabilistic neural network(PNN)-based prediction of pore structure parameters.This method,comprehensively considering the impacts of elastic parameters,physical parameters,and dispersion properties,achieve remarkable results.Compared to traditional single-attribute fluid identification method,the proposed method demonstrates higher accuracy,particularly for gas-bearing areas,fully verifying its effectiveness in fluid identification and highlighting its potential for widespread application.
|
Received: 07 May 2024
Published: 26 February 2025
|
|
|
|
|
|
Well 1 synthetic record
|
|
Flowchart of the integrated fluid factor prediction
|
|
A petrophysical model of carbonate rocks considering connected pores and pore shapes
|
|
Effect analysis of pore parameters on elastic modulus based on rock physical model a—the relationship between pore parameters and bulk modulus when connected pores change; b—the relationship between pore parameters and shear modulus when connected pores change; c—the relationship between pore parameters and density when connected pores change; d—the relationship between pore parameters and bulk modulus when soft pore content changes; e—the relationship between pore parameters and shear modulus when soft pore content changes; f—the relationship between pore parameters and density when soft pore content changes
|
|
Shear wave velocity prediction results a—shear wave prediction results of quality control well I1; b—shear wave prediction results of quality control well I2; c—shear wave prediction results of prediction well 1; d—shear wave prediction results of prediction well 2
|
|
Sensitivity analysis of pore shape parameter(soft pore content) a—scatter-point analysis of P-S velocity ratio and bulk modulus;b—scatter analysis of shear modulus and Poisson's ratio;c—bulk modulus and Poisson's ratio scatter analysis;d—scatter analysis of P-wave velocity and S-wave velocity;e—bulk modulus,p-wave velocity and Poisson's ratio scatter analysis;f—scatterpoint analysis of P-wave velocity,S-wave velocity and P-wave modulus;g—bulk modulus,density and P/S velocity ratio scatter analysis
|
|
Flow chart of PCNN model
|
|
LP-CNN multi-attribute fusion process(using two attributes as an example)
|
|
Model reservoir(a) and gas saturation(b) diagram
|
|
Earthquake forward modeling resul
|
|
Schematic diagram of single-attribute results a—longitudinal wave velocity difference(normalized result);b—dispersion factor(normalized result);c—pore structure parameters
|
|
Prediction results of multi-attribute fusion(normalized results)
|
|
Schematic of the prediction results of the fourth section of Majiagou Formation
|
[1] |
付金华, 刘新社, 魏柳斌, 等. 鄂尔多斯盆地奥陶系盐下马家沟组四段天然气勘探突破及意义[J]. 中国石油勘探, 2022, 27(2):47-58.
|
[1] |
Fu J H, Liu X S, Wei L B, et al. Natural gas exploration breakthrough and significance of the fourth Member of the Ordovician subsalt Majiagou Formation in Ordos Basin[J]. China Petroleum Exploration, 2012, 27(2):47-58.
|
[2] |
何海清, 郭绪杰, 赵振宇, 等. 鄂尔多斯盆地奥陶系盐下马四段天然气成藏新认识及勘探重大突破[J]. 石油勘探与开发, 2022, 49(3):429-439.
|
[2] |
He H Q, Guo X J, Zhao Z Y, et al. New understanding and exploration breakthrough of natural gas accumulation in the Fourth Member of Yanxama,Ordovician,Ordos Basin[J]. Petroleum Exploration and Development, 2022, 49(3):429-439.
|
[3] |
Smith G C, Gidlow P M. Weighted stacking for rock property estimation and detection of gas[J]. Geophysical Prospecting, 2010, 35(9):993-1014.
|
[4] |
Goodway B, Chen T, Downton J. Improved AVO fluid detection and lithology discrimination using Lamé petrophysical parameters;“λρ”,“μρ”,& “λ/μ fluid stack”,from P and S inversions[C]// SEG Technical Program Expanded Abstracts 1997, Society of Exploration Geophysicists,1997:183-186.
|
[5] |
Smith G C, Gidlow M. The fluid factor angle and the crossplot angle[C]// SEG Technical Program Expanded Abstracts 2003,Society of Exploration Geophysicists, 2003:185-188.
|
[6] |
Russell B, Hedlin K, Hilterman F J, et al. Fluid-property discrimination with AVO:A Biot-Gassmann perspective[J]. Geophysics, 2003, 68(1):29-39.
|
[7] |
Russell B H, Gray D, Hampson D P, et al. Linearized AVO and poroelasticity[J]. CREWES Research Report, 2011, 76(3):C19-C29.
|
[8] |
宁中华, 何振华, 黄德基. 基于地震资料的高灵敏流体识别[J]. 石油地球物理勘探, 2006, 45(3):239-241.
|
[8] |
Ning Z H, He Z H, Huang D J. High sensitive fluid identification based on seismic data[J]. Geophysical Prospecting for Petroleum, 2006, 45(3):239-241.
|
[9] |
杨童. 基于EI-Fatti弹性波阻抗反演的流体识别[J]. 物探与化探, 2012, 36(3):360-366.
|
[9] |
Yang T. Fluid identification based on EI-Fatti elastic impedance inversion[J]. Geophysical and Geochemical Exploration, 2012, 36(3):360-366.
|
[10] |
黄捍东, 汪佳蓓, 郭飞. 敏感参数分析在叠前反演流体识别中的应用[J]. 物探与化探, 2012, 36(6):941-946.
|
[10] |
Huang H D, Wang J B, Guo F. The application of sensitive parameters analysis to fluid identification based on pre-stack inversion[J]. Geophysical and Geochemical Exploration, 2012, 36(6):941-946.
|
[11] |
李红梅. 弹性参数直接反演技术在储层流体识别中的应用[J]. 物探与化探, 2014, 38(5):970-975.
|
[11] |
Li H M. The application of elastic parameters direct inversion to reservoir fluid identification[J]. Geophysical and Geochemical Exploration, 2014, 38(5):970-975.
|
[12] |
李灿, 归平军. 纵横波速度比在东胜气田致密低渗储层流体识别中的应用[J]. 物探与化探, 2019, 43(3):536-542.
|
[12] |
Li C, Gui P J. Vp/Vs applied to fluid identification of tight sandstone reservoir of Dongsheng gas field[J]. Geophysical and Geochemical Exploration, 2019, 43(3):536-542.
|
[13] |
李英, 秦德海. 基于流体替代的敏感弹性参数优选及流体识别在渤海B油田的应用[J]. 物探与化探, 2018, 42(4):662-667.
|
[13] |
Li Y, Qin D H. The optimization of sensitive elastic parameters based on fluid substitution and the application of fluid identification to Bohai B Oilfield[J]. Geophysical and Geochemical Exploration, 2018, 42(4):662-667.
|
[14] |
Yin X, Zhang S. Bayesian inversion for effective pore-fluid bulk modulus based on fluidmatrix decoupled amplitude variation with offset approximation[J]. Geophysics, 2014, 79(5):221-232.
|
[15] |
付金华, 于洲, 李程善, 等. 鄂尔多斯盆地东部米探1井奥陶系马四段天然气勘探新发现及勘探方向[J]. 天然气工业, 2021, 41(12):17-27.
|
[15] |
Fu J H, Yu Z, Li C S, et al. New discoveries and exploration directions of natural gas in the fourth Member of the Ordovician Maji Formation in Well Mitan1,Eastern Ordos Basin[J]. Natural Gas Industry, 2021, 41(12):17-27.
|
[16] |
丁振纯, 高星, 董国栋, 等. 鄂尔多斯盆地奥陶系盐下白云岩储层特征、成因及分布[J]. 海相油气地质, 2021, 26(1):16-24.
|
[16] |
Ding Z C, Gao X, Dong G D, et al. Characteristics,genesis and distribution of Ordovician subsalt dolomite reservoir in Ordos Basin[J]. Marine Origin Petroleum Geology, 2021, 26(1):16-24.
|
[17] |
Fryer G J. A slowness approach to the reflectivity method of seismogram synthesis[J]. Geophysical Journal International, 2007, 63(3):747-758.
|
[18] |
Ruiz F, Cheng A. A rock physics model for tight gas sand[J]. The Leading Edge, 2010, 29(12):1484-1489.
|
[19] |
杨骐羽, 李景叶, 吴凡, 等. 考虑软矿物纵横比的页岩岩石物理建模及其应用[J]. 物探与化探, 2024, 48(1):98-104.
|
[19] |
Yang Q Y, Li J Y, Wu F, et al. A petrophysical model of shales considering soft-mineral aspect ratios and its application[J]. Geophysical and Geochemical Exploration, 2024, 48(1):98-104.
|
[20] |
王璞, 吴国忱. 基于自相容近似的致密储层岩石物理建模[J]. 地球物理学进展, 2015, 30(5):2233-2238.
|
[20] |
Wang P, Wu G C. The rock physics modeling for tight reservoir based on the self-consistent approximation[J]. Progress in Geophysics, 2015, 30(5):2233-2238.
|
[21] |
Hill R. Elastic properties of reinforced solids:Some theoretical principles[J]. Journal of the Mechanics and Physics of Solids, 1963, 11(5):357-372.
|
[22] |
Wood A B, Lindsay R B. A textbook of sound[J]. Physics Today, 1956, 9(11):37.
|
[23] |
薄昕, 徐旺林, 陈小宏, 等. 基于局部熵的 LP-PCNN 多属性融合裂缝预测方法[J] .石油物探, 2022, 61(5):821-829.
|
[23] |
Bo X, Xu W L, Chen X H, et al. LP-PCNN multi-attribute fusion fracture prediction method based on local entropy[J]. Geophysical Prospecting for Petroleum, 2022, 61(5):821-829.
|
|
|
|