|
|
Inversion imaging of petrophysical data |
SU Ben-Yu1( ), ZHANG Jia-Qi1, TAN Deng-Pan2, YU Jing-Cun2, LI Zhi-Xiong3 |
1. Key Laboratory of Gas and Fire Control for Coal Mines,China University of Mining and Technology, Xuzhou 221116, China 2. School of Resources and Geosciences, China University of Mining and Technology, Xuzhou 221116, China 3. Faculty of Mechanical Engineering, Opole University of Technology, 45-758 Opole, Poland |
|
|
Abstract The inversion of petrophysical data can image the microscopic fracture structures inside rocks, revealing the evolutionary patterns of fractures within rocks and soil with changes in external environments. Hence, it is an intuitive and reliable method for investigating the mechanisms of deep geotechnical disasters. This study presented a petrophysical data acquisition system and resistivity-based forward modeling and inversion algorithms. Based on the above, this study conducted numerical simulations of 2D and 3D inversion imaging of petrophysical data. As indicated by the numerical simulation results, 2D inversion imaging can characterize millimeter-scale rock fractures with high/low resistivities, whereas 3D inversion imaging can accurately locate and effectively identify millimeter-scale fractures and vugs with high/low resistivities. Moreover, data measurement and inversion imaging were conducted on rock samples subjected to microwave-induced fracturing in three states: heated sandstone before failure, sandstone heated to a molten state, and molten sandstone in a cooled state, preliminarily revealing the variation patterns of sandstone fractures under microwave heating. Overall, this study provides a novel method for exploring the mechanisms of deep geotechnical disasters.
|
Received: 07 April 2024
Published: 26 February 2025
|
|
|
|
|
|
Microelectrode rock sample acquisition system
|
|
Acquisition control interface
|
|
Parameter setting interface
|
|
Unstructured tetrahedral element
|
|
Numerical simulation of core fracture model with high resistivity in the middle and low resistivity on both sides
|
|
Numerical simulation of core fracture model with low resistivity in the middle and high resistivity on both sides
|
|
Numerical simulation of fracture-cavity three-dimensional core sample model
|
|
The inversion result slices of numerical simulation of fracture-cavity three-dimensional core sample model
|
|
Core resistivity data acquisition system
|
|
The error of core resistivity data acquisition
|
|
Microwave rock breaking physical experiments and data inversion imaging
|
[1] |
刘欢, 徐锦绣, 高文博, 等. 基于解释单元的水淹层原始电阻率反演及应用[J]. 地球物理学进展, 2019, 34(1):144-150.
|
[1] |
Liu H, Xu J X, Gao W B, et al. Original resistivity inversion of water-flooded zones based on interpretation unit and its application[J]. Progress in Geophysics, 2019, 34(1):144-150.
|
[2] |
高超, 秦胜君, 安守学, 等. 基于三维电阻率反演技术的采动覆岩“两带” 发育特征研究[J]. 山西煤炭, 2023, 43(1):109-118.
|
[2] |
Gao C, Qin S J, An S X, et al. Development characteristics of the “two zones” of mining overburden strata based on 3D resistivity inversion[J]. Shanxi Coal, 2023, 43(1):109-118.
|
[3] |
杨志成, 陈海宏, 周玲玲, 等. 时频电磁法在金牛湖地区深部地热资源勘查中的应用[J]. 工程地球物理学报, 2024, 21(1):81-91.
|
[3] |
Yang Z C, Chen H H, Zhou L L, et al. Application of time-frequency electromagnetic method in exploration of deep geothermal resources in Jinniu Lake area[J]. Chinese Journal of Engineering Geophysics, 2024, 21(1):81-91.
|
[4] |
Wahab S, Saibi H, Mizunaga H. Groundwater aquifer detection using the electrical resistivity method at Ito Campus,Kyushu University (Fukuoka,Japan)[J]. Geoscience Letters, 2021, 8(1):15.
|
[5] |
Loke M H, Rucker D F, Chambers J E, et al. Electrical resistivity surveys and data interpretation[M]. Cham: Springer International Publishing, 2020.
|
[6] |
Tso C H M, Iglesias M, Wilkinson P, et al. Efficient multiscale imaging of subsurface resistivity with uncertainty quantification using ensemble Kalman inversion[J]. Geophysical Journal International, 2021, 225(2):887-905.
|
[7] |
Aleardi M, Vinciguerra A, Hojat A. A geostatistical Markov chain Monte Carlo inversion algorithm for electrical resistivity tomography[J]. Near Surface Geophysics, 2021, 19(1):7-26.
|
[8] |
杨永明, 鞠杨, 刘红彬, 等. 孔隙结构特征及其对岩石力学性能的影响[J]. 岩石力学与工程学报, 2009, 28(10):2031-2038.
|
[8] |
Yang Y M, Ju Y, Liu H B, et al. Influence of porous structure properties on mechanical performances of rock[J]. Chinese Journal of Rock Mechanics and Engineering, 2009, 28(10):2031-2038.
|
[9] |
孙强, 张志镇, 薛雷, 等. 岩石高温相变与物理力学性质变化[J]. 岩石力学与工程学报, 2013, 32(5):935-942.
|
[9] |
Sun Q, Zhang Z Z, Xue L, et al. Physico-mechanical properties variation of rock with phase transformation under high temperature[J]. Chinese Journal of Rock Mechanics and Engineering, 2013, 32(5):935-942.
|
[10] |
何国梁, 张磊, 吴刚. 循环冻融条件下岩石物理特性的试验研究[J]. 岩土力学, 2004, 25(S2):52-56.
|
[10] |
He G L, Zhang L, Wu G. Test study on physical characteristics of rock under freezing-thawing cycles[J]. Rock and Soil Mechanics, 2004, 25(S2):52-56.
|
[11] |
孟召平, 彭苏萍, 张慎河. 不同成岩作用程度砂岩物理力学性质三轴试验研究[J]. 岩土工程学报, 2003, 25(2):140-143.
|
[11] |
Meng Z P, Peng S P, Zhang S H. Triaxial test on physical and mechanical properties of sandstone for different diagenesis degree[J]. Chinese Journal of Geotechnical Engineering, 2003, 25(2):140-143.
|
[12] |
马炳镇, 李貅. 矿井直流电法超前探中巷道影响的数值模拟[J]. 煤田地质与勘探, 2013, 41(1):78-81.
|
[12] |
Ma B Z, Li X. Roadway influences on advanced DC detection in underground mine[J]. Coal Geology & Exploration, 2013, 41(1):78-81.
|
[13] |
李毛飞, 刘树才, 姜志海, 等. 矿井直流电透视底板探测及三维反演解释[J]. 煤炭学报, 2022, 47(7):2708-2721.
|
[13] |
Li M F, Liu S C, Jiang Z H, et al. Detecting floor geological information bymine DC perspective and 3D inversion[J]. Journal of China Coal Society, 2022, 47(7):2708-2721.
|
[14] |
Tang W W, Liu J X, Ma C Y, et al. Fast iterative solver for 3D finite-element modeling of controlled-source electromagnetic responses with vector and scalar potentials[J]. Geophysics, 2023, 88(3):E91-E105.
|
[15] |
Yang Y, Wang P F, Brandenberg S J. An algorithm for generating spatially correlated random fields using Cholesky decomposition and ordinary Kriging[J]. Computers and Geotechnics, 2022,147:104783.
|
[16] |
Neyamadpour A. Application of joint inversion of electrical resistivity data to determine the geometric distribution of municipal sewage leaks:A case study in the Masjedsoleyman town[J]. Advanced Applied Geology, 2023, 13(4):1105-1117.
|
[17] |
Mohammadi Vizheh M, Bastani M, Kalscheuer T, et al. Constrained 2D inversion of radio-magnetotelluric and controlled-source audio-magnetotelluric data using high-resolution reflection seismic data:An example in groundwater surveying from Heby,Sweden[J]. Geophysics, 2023, 88(2):B79-B90.
|
[18] |
Avseth P, Mukerji T, Mavko G. Quantitative seismic interpretation:Applying rock physics tools to reduce interpretation risk[M]. Cambridge: Cambridge University Press, 2005.
|
[19] |
陈剑铭, 任启伟, 涂运中, 等. 基于孔裂隙理论的岩石物理实验研究与理论应用[J]. 地质论评, 2023, 69(S1):585-587.
|
[19] |
Chen J M, Ren Q W, Tu Y Z, et al. Experimental study and theoretical application of rock physics based on pore and fracture theory[J]. Geological Review, 2023, 69(S1):585-587.
|
[20] |
Anselmetti F S, Eberli G P. Controls on sonic velocity in carbonates[J]. Pure and Applied Geophysics, 1993, 141(2):287-323.
|
[21] |
Xu S Y, Payne M A. Modeling elastic properties in carbonate rocks[J]. The Leading Edge, 2009, 28(1):66-74.
|
[22] |
印兴耀, 宗兆云, 吴国忱. 岩石物理驱动下地震流体识别研究[J]. 中国科学:地球科学, 2015, 45(1):8-21.
|
[22] |
Yin X Y, Zong Z Y, Wu G C. Study on seismic fluid identification driven by petrophysics[J]. Scientia Sinica:Terrae, 2015, 45(1):8-21.
|
[23] |
何沛田, 黄志鹏. 层状岩石的强度和变形特性研究[J]. 岩土力学, 2003, 24(S1):1-5.
|
[23] |
He P T, Huang Z P. Studies of strength and deformation characteristics for stratified rock[J]. Rock and Soil Mechanics, 2003, 24(S1):1-5.
|
[24] |
罗彦斌, 陈建勋, 王利宝, 等. 考虑层间黏聚力的水平层状围岩隧道顶板力学模型计算[J]. 中国公路学报, 2018, 31(10):230-237,265.
|
[24] |
Luo Y B, Chen J X, Wang L B, et al. Mechanical model calculations of tunnel roof with horizontal StratifiedRock mass tunneling considering the interlayer cohesion[J]. China Journal of Highway and Transport, 2018, 31(10):230-237,265.
|
[25] |
刘平, 刘泉声, 夏明锬, 等. 孔洞形状对层状岩石力学特性影响的FDEM数值模拟研究[J]. 中南大学学报:自然科学版, 2024, 55(2):595-606.
|
[25] |
Liu P, Liu Q S, Xia M T, et al. Effect of hole shapes on mechanical behavior of layered rocks using FDEM numerical method[J]. Journal of Central South University:Science and Technology Edition, 2024, 55(2):595-606.
|
[26] |
张茹, 吕游, 张泽天, 等. 深地工程多维信息感知与智能建造的发展与展望[J]. 煤炭学报, 2024, 49(3):1259-1290.
|
[26] |
Zhang R, Lyu Y, Zhang Z T, et al. Development and prospect of multidimensional information perception and intelligent construction in deep earth engineering[J]. Journal of China Coal Society, 2024, 49(3):1259-1290.
|
[27] |
朱健, 胡国忠, 许家林, 等. 煤层层理对微波破煤增透效果的影响规律[J]. 煤炭学报, 2024, 49(5):2324-2337.
|
[27] |
Zhu J, Hu G Z, Xu J L, et al. The influence law of coal seam bedding on the effect of microwave breaking coal and increasing permeability[J]. Journal of Coal Science, 2024, 49(5):2324-2337.
|
[28] |
许家林. 煤矿绿色开采20年研究及进展[J]. 煤炭科学技术, 2020, 48(9):1-15.
|
[28] |
Xu J L. Research and progress of coal mine green mining in 20 years[J]. Coal Science and Technology, 2020, 48(9):1-15.
|
[29] |
王兆丰, 刘军. 我国煤矿瓦斯抽放存在的问题及对策探讨[J]. 煤矿安全, 2005, 36(3):29-32,44.
|
[29] |
Wang Z F, Liu J. Problems existing in methane drainage in coal mines of China and probing into the countermeasures[J]. Safety in Coal Mines, 2005, 36(3):29-32,44.
|
[30] |
李贺. 微波辐射下煤体热力响应及其流—固耦合机制研究[D]. 徐州: 中国矿业大学, 2018.
|
[30] |
Li H. Studyonthermalresponseand fluid-solidcoupling mechanismof coalunder microwave radiation[D]. Xuzhou: China University of Mining and Technology, 2018.
|
[31] |
杨新乐, 任常在, 张永利, 等. 低渗透煤层气注热开采热—流—固耦合数学模型及数值模拟[J]. 煤炭学报, 2013, 38(6):1044-1049.
|
[31] |
Yang X L, Ren C Z, Zhang Y L, et al. Numerical simulation of the coupled thermal-fluid-solid mathematical models during extracting methane in low-permeability coal bed by heat injection[J]. Journal of China Coal Society, 2013, 38(6):1044-1049.
|
[32] |
管伟明, 张紫昭. 微波加热煤岩裂隙变形的电—热—固耦合模型[J]. 中国矿业, 2015, 24(7):133-136.
|
[32] |
Guan W M, Zhang Z Z. Numerical simulate for crack deformation of coal in microwave heated[J]. China Mining Magazine, 2015, 24(7):133-136.
|
|
|
|