|
|
Development of a MEMS-based seismograph for in-seam wave seismic exploration |
ZHAO Peng-Peng( ) |
CCTEG Xi'an Research Institute(Group) Co.,Ltd.,Xi'an 710077,China |
|
|
Abstract Currently,seismic data acquisition of in-seam waves is typically performed using mine-orientated digital seismographs combined with moving coil geophones.However,such conventional data acquisition system suffers from narrow frequency bandwidths and bulky equipment.To improve data quality and construction efficiency,this study designed a single-channel seismograph for in-seam wave exploration by incorporating a microelectromechanical system(MEMS) accelerometer,with the advantages of wide frequency bandwidth and miniaturization,into the acquisition card.The developed seismograph allows for independent excitation and distributed acquisition,with frequency bandwidths ranging from 1 to 800 Hz,resulting in improved data quality.A single seismograph weighs only 0.52 kg,and the integrated design completely eliminates the constraints of cables.The total weight of the 100 channel observation system is only 52 kg,representing only 10% of the weight of a distributed seismograph and 25% of that of a nodal seismograph system.The reduction in the overall weight contributes to both reduced transportation costs and enhanced construction efficiency.
|
Received: 09 May 2024
Published: 08 January 2025
|
|
|
|
|
|
Principle block diagram of a MEMS-based single-channel seismograph for in-seam wave exploration
|
|
System block diagram of ADS1282
|
|
Circuit diagram of intrinsically safe power supply
|
|
System block diagram of clock system
|
|
Electrical connection diagram of LEA-M8T
|
|
The operational logic block diagram of a MEMS-based single-channel seismograph for in-seam wave exploration
|
|
Physical diagram of in-seam wave seismometer circuit board based on MEMS
|
|
Structural design drawing of the seismograph
|
|
Physical picture of charging cabinet
|
频率/Hz | 加速度/(m·s-2) | 灵敏度/(mV·m·s-2) | 偏差/% | 5 | 0.5 | 178 | -3.26 | 10 | 5 | 182 | -1.09 | 16 | 5 | 184 | 参考点 | 20 | 5 | 184 | 0 | 40 | 5 | 184 | 0 | 60 | 5 | 184 | 0 | 80 | 5 | 179 | -2.72 | 100 | 5 | 176 | -4.35 | 120 | 5 | 175 | -4.89 | 140 | 5 | 173 | -5.98 | 160 | 5 | 170 | -7.61 | 180 | 5 | 168 | -8.70 | 200 | 5 | 165 | -10.33 | 300 | 5 | 156 | -15.22 | 500 | 5 | 142 | -22.83 | 1000 | 5 | 147 | -20.11 | 2000 | 5 | 156 | -15.22 |
|
Sensitivity of a MEMS-based single-channel seismograph for In-seam wave exploration
|
|
Amplitude frequency curve graph
|
| 某分布式地震仪 | 某节点式地震仪 | MEMS | 单位重量 | 48道总重 | 96道总重 | 单位重量 | 48道总重 | 96道总重 | 单位重量 | 48道总重 | 96道总重 | 中央控制站 | 22 | 22 | 22 | | | | 0.52 | 24.96 | 49.92 | 采集站 | 2.7 | 64.8 | 129.6 | 3.2 | 51.2 | 102 | | | | 电源箱 | | | | | | | | | | 中继站 | 2.7 | 2.7 | | | | | | | | 检波器 | 3.3 | 158.4 | 316.8 | 0.4 | 19.2 | 38.4 | | | | 检波器大线 | | | | 1.6 | 25.6 | 51.2 | | | | 网络数据线 | 12 | 12 | 12 | | | | | | | 同步触发 | 2.7 | 2.7 | 2.7 | 0.6 | 0.6 | 0.6 | | | | 发爆机 | 0.5 | 0.5 | 0.5 | 0.8 | 0.8 | 0.8 | | 0.5 | 0.5 | 合计 | | 263.1 | 483.6 | | 97.4 | 193.2 | | 25.46 | 50.42 |
|
Weight comparison of seismographs in different modes
|
|
Sample error trend
|
|
Energy analysis of the 88th channel transmission in-seam wave
|
[1] |
张帅帅, 张林行, 林君, 等. 遥测地震仪发展综述[J]. 地球物理学进展, 2014, 29(3):1463-1471.
|
[1] |
Zhang S S, Zhang L H, Lin J, et al. Summary of development of telemetry seismometers[J]. Progress in Geophysics, 2014, 29(3):1463-1471.
|
[2] |
李守才, 王辉明, 马国庆, 等. 基于MEMS传感器的分布式数据采集系统的研究[C]// 合肥: 中国地球物理学会第二十五届年会, 2009.
|
[2] |
Li S C, Wang H M, Ma G Q, et al. The research of distributed data acquisition system based on MEMS accelerometers[C]// Hefei: Chinese Geophysical Society, 2009.
|
[3] |
吴治涛. MEMS加速度计用于地震测量的可行性研究[D]. 绵阳: 西南科技大学, 2011.
|
[3] |
Wu Z T. MEMS accelerometer feasibility study on earthquake measuring[D]. Mianyang: Southwest University of Science and Technology, 2011.
|
[4] |
王肃静, 卢川, 游庆瑜, 等. 一种低成本无缆地震仪采集站的研制[J]. 地球物理学报, 2015, 58(4):1425-1433.
|
[4] |
Wang S J, Lu C, You Q Y, et al. Design of a low cost Non-cable seismic acquisition station[J]. Chinese Journal of Geophysics, 2015, 58(4):1425-1433.
|
[5] |
杨真, 冯涛, Wang Shugang. 0.9 m薄煤层SH型槽波频散特征及波形模式[J]. 地球物理学报, 2010, 53(2):442-449.
|
[5] |
Yang Z, Feng T, Wang S G. Dispersion characteristics and wave shape mode of SH channel wave in a 0.9 m thin coal seam[J]. Chinese Journal of Geophysics, 2010, 53(2): 442-449.
|
[6] |
胡时岳, 吕刚. 地震检波器横向振动特性分析与实验研究[J]. 西安交通大学学报, 1991, 25(6):45-50,58.
|
[6] |
Hu S Y, Lyu G. Analytical calculation and experimental study of the horizontal vibration properties of geophones[J]. Journal of Xi’an Jiaotong University, 1991, 25(6):45-50, 58.
|
[7] |
程建远, 江浩, 姬广忠, 等. 基于节点式地震仪的煤矿井下槽波地震勘探技术[J]. 煤炭科学技术, 2015, 43(2):25-28.
|
[7] |
Cheng J Y, Jiang H, Ji G Z, et al. Channel wave seismic exploration technology based on node digital seismograph in underground mine[J]. Coal Science and Technology, 2015, 43(2):25-28.
|
[8] |
张平松, 欧元超, 李圣林. 我国矿井物探技术及装备的发展现状与思考[J]. 煤炭科学技术, 2021, 49(7):1-15.
|
[8] |
Zhang P S, Ou Y C, Li S L. Development quo-status and thinking of mine geophysical prospecting technology and equipment in China[J]. Coal Science and Technology, 2021, 49(7):1-15.
|
[9] |
李渊. 新型煤矿井下单分量无缆地震仪研制[J]. 煤田地质与勘探, 2021, 49(3):219-226.
|
[9] |
Li Y. The development of a single-component non-cable seismograph in underground coal mines[J]. Coal Geology & Exploration, 2021, 49(3):219-226.
|
[10] |
于浩淼. INOVA三分量数字检波器VectorSeis应用研究[D]. 西安: 西安石油大学, 2014.
|
[10] |
Yu H M. INOVA 3-component digital sensor vectorseis application study[D]. Xi’an: Xi’an Shiyou University, 2014.
|
[11] |
赵会彦. MEMS数字检波器结构与原理研究[D]. 西安: 西安石油大学, 2014.
|
[11] |
Zhao H Y. MEMS structure and principle of digital geophone research[D]. Xi’an: Xi’an Shiyou University, 2014.
|
[12] |
汪永青. MEMS地震检波器中低压低功耗放大器的研究与设计[D]. 北京: 中国地质大学(北京), 2019.
|
[12] |
Wang Y Q. Research and design of low voltage and power consumption amplifier in MEMS geophones[D]. Beijing: China University of Geosciences(Beijing), 2019.
|
[13] |
魏继东. 模拟与数字检波器记录精度对比及其对信噪比的影响[J]. 地球物理学进展, 2018, 33(4):1726-1733.
|
[13] |
Wei J D. Comparison of recording accuracy between analog geophone and MEMS accelerometer and their influence to the S/N ratio[J]. Progress in Geophysics, 2018, 33(4):1726-1733.
|
[14] |
毕克飞. 408ul和428xl地震仪器原理分析及其兼容性的应用[D]. 西安: 西安石油大学, 2014.
|
[14] |
Bi K F. 408ul and 428xl seismic instrument principle analysis and its application in the compatibility[D]. Xi’an: Xi’an Shiyou University, 2014.
|
[15] |
韩晓泉. MEMS数字检波器简介及指标分析[J]. 物探装备, 2013, 23(6):351-355.
|
[15] |
Han X Q. Brief introduction on MEMS digital geophone and its specifications[J]. Equipment for Geophysical Prospecting, 2013, 23(6):351-355.
|
[16] |
王怀秀, 仇帅, 朱国维, 等. 基于MEMS与LwIP的煤矿三分量地震数据采集系统[J]. 煤田地质与勘探, 2021, 49(4):8-14.
|
[16] |
Wang H X, Qiu S, Zhu G W, et al. Three-component seismic data acquisition system of coal mine based on MEMS and LwIP[J]. Coal Geology & Exploration, 2021, 49(4):8-14.
|
[17] |
张怀榜, 于静, 陈吴金, 等. 三分量数字检波器电磁干扰产生的机理研究[J]. 石油仪器, 2011, 25(1):30-32,102.
|
[17] |
Zhang H B, Yu J, Chen W J, et al. The principle research of the electromagnetic noise generated by three digital sensor units[J]. Petroleum Instruments, 2011, 25(1):30-32,102.
|
[18] |
江浩. MAX14571在矿用本质安全电源中的应用[J]. 煤炭技术, 2015, 34(1):282-284.
|
[18] |
Jiang H. Application of MAX14571 in mining intrinsically safe power[J]. Coal Technology, 2015, 34(1):282-284.
|
[1] |
JIA Song, HE Zhan-Xiang, YANG Hui, YAO Yong-Chao, WANG Cai-Xia. Development of a nodal rotational seismometer with a micro-electro-mechanical system sensor and testing of H/V spectral ratios[J]. Geophysical and Geochemical Exploration, 2024, 48(6): 1471-1478. |
[2] |
SUN Jie-Jie, LI Hai-Bing, DING Zhu-Shun. Requirement analysis of accelerometer temperature coefficient in gradiometer measurement[J]. Geophysical and Geochemical Exploration, 2017, 41(4): 736-740. |
|
|
|
|