|
|
Wavefield decomposition based on sparse-constrained parabolic Radon transform in the frequency domain |
ZHANG Yong-Sheng1( ), ZHANG Rong1, FAN Yi2, ZHANG An-Jia2, LI Ying-Cai2 |
1. Northwest Oil Field Company, SINOPEC, Urumqi 830011, China 2. Beijing Softland Scientific & Technology Co. Ltd., Beijing 100083, China |
|
|
Abstract Multiple types of non-layered and irregular hydrocarbon reservoirs have been found in the deep carbonate strata within the Tarim Basin. These carbonate reservoirs, different from layered reservoirs, are geological bodies with limited lateral bodies in at least one direction. The observed seismic reflected wavefield is a composite field composed of reflected and diffracted (scattered) waves formed by layered strata and non-layered and irregular geological bodies. The three types of wavefields exhibit different morphological characteristics in different datasets. Based on the differences in wavefield morphology, this study, using a technique for separating layered and random wavefields based on an image-guided, sparse-constrained parabolic Radon transform in the frequency domain, decomposed high signal-to-noise-ratio data of complex reflected wavefields, which had undergone migration processing or not, into a reflected wavefield with infinite lateral extent and a diffracted (scattered) wavefield of irregular geological bodies with limited lateral extent. This technique provides a foundation for the direct prediction and investigation of irregular reservoirs and has been successfully applied in both the Tarim and Ordos basins.
|
Received: 20 February 2024
Published: 08 January 2025
|
|
|
|
|
|
Typical section of seismic wave field characteristics of geological anomalies in Tarim Basin
|
|
Forward modeling of three-layer medium+irregular anomalous body (karst cave) model
|
|
Forward modeling of undulating weathering surface + irregular anomalous body (karst cave)
|
|
Forward simulation of the effect of cave height and width on bead morphology
|
|
Diffraction wave amplitude curve of the cave with a width of 15m and a height of 10~600m
|
|
Correlation analysis between the width of short-axis reflected wave and the width of karst cave after diffraction wave migration
|
|
Layered reflection and noise decomposed from common imaging point gather
|
|
Implementation steps of wave field separation based on waveform differences
|
|
Irregular anomalous bodies are highlighted after the layer reflection is eliminated by wave field decomposition
|
|
Application of wave field decomposition to seismic reflection beading characteristics in the Ordovician carbonate strata in the Tarim Basin
|
|
Application of wave field decomposition in fault-controlled fracture cave in Shuntogole area, Tarim Basin
|
[1] |
朱大绶. 朱大绶石油物探文选[M]. 北京: 地质出版社, 1997.
|
[1] |
Zhu D S. Selected works of petroleum geophysical exploration by Zhu Dashou[M]. Beijing: Geological Publishing House, 1997.
|
[2] |
唐文榜, 刘来祥, 樊佳芳, 等. 溶洞充填物判识的频率差异分析技术[J]. 石油与天然气地质, 2002, 23(1):41-44.
|
[2] |
Tang W B, Liu L X, Fan J F, et al. Analytic technique of frequency difference for discrimination of cavity fillers[J]. Oil & Gas Geology, 2002, 23(1):41-44.
|
[3] |
姚姚, 唐文榜. 深层碳酸盐岩岩溶风化壳洞缝型油气藏可检测性的理论研究[J]. 石油地球物理勘探, 2003, 38(6):623-629,708-579.
|
[3] |
Yao Y, Tang W B. Theoretical study of detectable cavern-fractured reservoir in weathered Karst of deep carbonatite[J]. Oil Geophysical Prospecting, 2003, 38(6):623-629,708-579.
|
[4] |
漆立新, 顾汉明, 李宗杰, 等. 基于地震波振幅分辨塔河油田溶洞最小高度的理论探讨[J]. 地球物理学进展, 2008, 23(5):1499-1506.
|
[4] |
Qi L X, Gu H M, Li Z J, et al. Theoretical discussion on resolution of maximum height of cavity in the Tahe oilfield based on seismic amplitude[J]. Progress in Geophysics, 2008, 23(5):1499-1506.
|
[5] |
王士敏. 塔河油田奥陶系储层地震响应特征研究[J]. 新疆地质, 2003, 21(2):214-216.
|
[5] |
Wang S M. The study on seismics response characteristics of Karst fissure-cave-typed carbonate reservoir in ordivician of Tahe oilfield[J]. Xinjiang Geology, 2003, 21(2):214-216.
|
[6] |
李凡异, 魏建新, 狄帮让. 碳酸盐岩溶洞横向尺度变化的地震响应正演模拟[J]. 石油物探, 2009, 48(6):557-562,15.
|
[6] |
Li F Y, Wei J X, Di B R. Forward simulation of seismic response in carbonate Caverns with varied lateral scale[J]. Geophysical Prospecting for Petroleum, 2009, 48(6):557-562,15.
|
[7] |
李剑峰, 赵群, 郝守玲, 等. 塔河油田碳酸盐岩储层缝洞系统的物理模拟研究[J]. 石油物探, 2005, 44(5):428-432,15.
|
[7] |
Li J F, Zhao Q, Hao S L, et al. Physical modeling of the fracture-cave systems of carbonate reservoirs in Tahe oilfield[J]. Geophysical Prospecting for Petrole, 2005, 44(5):428-432,15.
|
[8] |
赵群, 曲寿利, 薛诗桂, 等. 碳酸盐岩溶洞物理模型地震响应特征研究[J]. 石油物探, 2010, 49(4):351-358,400,17-18.
|
[8] |
Zhao Q, Qu S L, Xue S G, et al. Study on the seismic response characteristics on the physical model of carbonate cave[J]. Geophysical Prospecting for Petroleum, 2010, 49(4):351-358,400,17-18.
|
[9] |
孙建国. 高频渐近散射理论及其在地球物理场数值模拟与反演成像中的应用——研究历史与研究现状概述以及若干新进展[J]. 吉林大学学报:地球科学版, 2016, 46(4):1231-1259.
|
[9] |
Sun J G. High-frequency asymptotic scattering theories and their applications in numerical modeling and imaging of geophysical fields:An overview of the research history and the state-of-the-art,and some new developments[J]. Journal of Jilin University:Earth Science Edition, 2016, 46(4):1231-1259.
|
[10] |
李东安, 漆立新. 全波场地震勘探技术[J]. 石油勘探与开发, 2022, 49(3):513-521.
|
[10] |
Li D A, Qi L X. Full wave seismic exploration technology[J]. Petroleum Exploration and Development, 2022, 49(3):513-521.
|
[11] |
李东安, 王梅生. 全波场地震采集[J]. 石油物探, 2023, 62(4):592-604,644.
|
[11] |
Li D A, Wang M S. Full-wave field seismic acquisition[J]. Geophysical Prospecting for Petroleum, 2023, 62(4):592-604,644.
|
[12] |
石油化学工业部石油地球物理勘探局计算中心站. 地震勘探数字技术:第三册[M]. 北京: 科学出版社, 1977.
|
[12] |
Central computing station of Petroleum Geophysical Prospecting Bureau,Ministry of Petroleum Chemical Industry. Digital technology of seismic exploration:Volume III[M]. Beijing: Science Press, 1977.
|
[13] |
朱生旺, 李佩, 宁俊瑞. 局部倾角滤波和预测反演联合分离绕射波[J]. 地球物理学报, 56(1):280-288.
|
[13] |
Zhu S W, Li P, Ning J R. Reflection/diffraction separation with a hybrid method of local dip filter and prediction inversion[J]. Chinese Journal of Geophysics, 2013, 56(1):280-288.
|
[14] |
刘培君, 黄建平, 李振春, 等. 一种基于反稳相的深度域绕射波分离成像方法[J]. 石油地球物理勘探, 2017, 52(5):967-973,879.
|
[14] |
Liu P J, Huang J P, Li Z C, et al. A diffraction imaging method in the depth domain driven by anti-stationary phase strategy[J]. Oil Geophysical Prospecting, 2017, 52(5):967-973,879.
|
[15] |
罗腾腾, 徐基祥, 秦臻, 等. 混合域高分辨率Radon变换及其在绕射波分离与成像中的应用[J]. 石油物探, 2020, 59(6):890-900.
|
[15] |
Luo T T, Xu J X, Qin Z, et al. Hybrid-domain high-resolution Radon transform and its application in diffraction wave separation and imaging[J]. Geophysical Prospecting for Petroleum, 2020, 59(6):890-900.
|
[16] |
魏巍, 高鸿, 刘忠岩. 奇异值分解技术在绕射波分离成像中的应用研究[J]. 石油物探, 2020, 59(2):236-241.
|
[16] |
Wei W, Gao H, Liu Z Y. Separation and imaging of seismic diffractions using singular value decomposition[J]. Geophysical Prospecting for Petroleum, 2020, 59(2):236-241.
|
[17] |
朱万怡, 王华忠, 吴成梁, 等. 基于行波分解的绕射波成像方法研究[J]. 石油物探, 2020, 59(2):226-235,302.
|
[17] |
Zhu W Y, Wang H Z, Wu C L, et al. Diffraction imaging based on wavefield decomposition[J]. Geophysical Prospecting for Petroleum, 2020, 59(2):226-235,302.
|
[18] |
汪天池, 刘少勇, 顾汉明, 等. 倾角域逆时偏移绕射波成像方法[J]. 石油地球物理勘探, 2020, 55(3):591-598,471.
|
[18] |
Wang T C, Liu S Y, Gu H M, et al. Seismic diffraction imaging by reverse time migration in dip angle domain[J]. Oil Geophysical Prospecting, 2020, 55(3):591-598,471.
|
[19] |
罗腾腾, 徐基祥, 孙夕平. 应用迭代收缩高分辨率Radon变换的绕射波分离与成像方法[J]. 石油地球物理勘探, 2021, 56(2):313-322,212-213.
|
[19] |
Luo T T, Xu J X, Sun X P. Diffraction wave separation and imaging based on high-resolution Radon transform on an iterative model shrinking approach[J]. Oil Geophysical Prospecting, 2021, 56(2):313-322,212-213.
|
[20] |
杨城增, 张宣堂, 盛同杰, 等. 绕射波叠前共虚震源道集分离方法[J]. 石油地球物理勘探, 2022, 57(4):847-854,739.
|
[20] |
Yang C Z, Zhang X T, Sheng T J, et al. Diffraction separation method in the prestack common virtual source gather[J]. Oil Geophysical Prospecting, 2022, 57(4):847-854,739.
|
[21] |
栾锡武, 杨佳佳. 地震绕射波波场分离与成像方法综述[J]. 石油物探, 2022, 61(5):761-770.
|
[21] |
Luan X W, Yang J J. A review of seismic diffraction wavefield separation and imaging methods[J]. Geophysical Prospecting for Petroleum, 2022, 61(5):761-770.
|
[1] |
CAO Shao-He, REN Feng-Ru, WANG Xiao-Xiao. Critical techniques for sweet spot prediction for tight sandstone reservoirs in the Dongsheng gas field and their application effects[J]. Geophysical and Geochemical Exploration, 2024, 48(4): 954-961. |
[2] |
HE Xi-Peng, LIU Ming, XUE Ye, LI Yan-Jing, HE Gui-Song, MENG Qing-Li, ZHANG Yong, LIU Hao-Juan, LAN Jia-Da, YANG Fan. Practices and future research directions of geophysical exploration for normal-pressure shale gas in complex structural areas,southeastern Chongqing[J]. Geophysical and Geochemical Exploration, 2024, 48(2): 314-326. |
|
|
|
|