|
|
Quasi-two-dimensional joint inversion of the data from the controlled source audio-frequency magnetotellurics and the microtremor survey |
ZHANG Ji-Wei( ), TAN Hui |
Institute of Urban Underground Space and Energy Studies, The Chinese University of Hong Kong (Shenzhen), Shenzhen 518172, China |
|
|
Abstract Both the controlled source audio-frequency magnetotellurics (CSAMT) and the microtremor survey exhibit promising application prospectsunder strong urban interference. However,single geophysical inversion methods are challenged by a multiplicity of solutions. To achieve the complementary advantages of different geophysical methods, and address the lateral discontinuity of single-point inversion, this studyexplored the quasi-two-dimensional joint inversion of the CSAMTand microtremor survey data. It enabled the joint inversionby introducing a lateral constraint matrix into the objective function for joint inversion and employing the limited-memory Broyden-Fletcher-Goldfarb-Shanno (LBFGS) algorithm. The reliability and effectiveness of the joint inversion were verified using the inversion example of synthetic data from theoretical models. The results show that compared to single data inversion, the joint inversion can effectively improve the accuracy of inversion results, with the resistivity model more consistent with theshear-wave velocity structure. Moreover,lateral constraints can effectively reduce the discontinuity of the physical parameters of adjacentsurvey points. The quasi-two-dimensional joint inversion with lateral constraints enhances the inversion reliability by obtaining more reasonable profile results of physical parameters and structures with the efficiency of single-point inversion.
|
Received: 10 November 2023
Published: 19 September 2024
|
|
|
|
|
|
Layered model of elastic media
|
|
Schematic of quasi two-dimensional joint inversion model
|
|
Inversion results of the tilted three layer model a—tilt three layer resistivity model; b—tilt three layer velocity model; c—single method inversion results (resistivity); d—single method inversion results (shear wave velocity); e—unconstrained joint inversion results (resistivity); f—unconstrained joint inversion results (shear wave velocity); g—lateral constraint joint inversion results (resistivity); h—lateral constraint joint inversion results (shear wave velocity)
|
|
Inversion results of step three layer model a—step three layer resistivity model; b—step three layer velocity model; c—single method inversion results (resistivity); d—single method inversion results (shear wave velocity); e—unconstrained joint inversion results (resistivity); f—unconstrained joint inversion results (shear wave velocity); g—lateral constraint joint inversion results (resistivity); h—lateral constraint joint inversion results (shear wave velocity)
|
[1] |
丁立锋, 徐佩芬, 凌苏群, 等. 微动勘探方法探测林南仓煤矿岩浆岩侵入体[J]. 煤炭科学技术, 2010, 38(7):100-103.
|
[1] |
Ding L F, Xu P F, Ling S Q, et al. Micro seismic exploration method applied to detect igneous magma intrusion in Linnancang Mine[J]. Coal Science and Technology, 2010, 38(7):100-103.
|
[2] |
刘永勤, 廖远国, 李学专, 等. 微动探测技术在轨道交通工程勘察中的应用研究[J]. 工程勘察, 2010, 38(S1):1-11.
|
[2] |
Liu Y Q, Liao Y G, Li X Z, et al. The application study of microtremor survey technology in rail transport engineering survey[J]. Geotechnical Investigation & Surveying, 2010, 38(S1):1-11.
|
[3] |
高艳华, 黄溯航, 刘丹, 等. 微动探测技术及其工程应用进展[J]. 科学技术与工程, 2018, 18(23):146-155.
|
[3] |
Gao Y H, Huang S H, Liu D, et al. Microtremor detection technology and its new progress in engineering application[J]. Science Technology and Engineering, 2018, 18(23):146-155.
|
[4] |
底青云, 王若. 可控源音频大地电磁数据正反演及方法应用[M]. 北京: 科学出版社, 2008.
|
[4] |
Di Q Y, Wang R. Controlled source audio-frequency magneto tellurics[M]. Beijing: Science Press, 2008.
|
[5] |
汤井田, 何继善. 可控源音频大地电磁法及其应用[M]. 长沙: 中南大学出版社, 2005.
|
[5] |
Tang J T, He J S. Controlled source audio magnetotelluric method and its application[M]. Changsha: Central South University Press, 2005.
|
[6] |
孙勇军, 徐佩芬, 凌甦群, 等. 微动勘查方法及其研究进展[J]. 地球物理学进展, 2009, 24(1):326-334.
|
[6] |
Sun Y J, Xu P F, Ling S Q, et al. Microtremor survey method and its progress[J]. Progress in Geophysics, 2009, 24(1):326-334.
|
[7] |
Toksöz M N, Lacoss R T. Microseisms:Mode structure and sources[J]. Science, 1968, 159(3817):872-873.
|
[8] |
Vozoff K, Jupp D L B. Joint inversion of geophysical data[J]. Geophysical Journal of the Royal Astronomical Society, 2007, 42(3):977-991.
|
[9] |
彭淼. 大地电磁与天然地震数据联合反演研究[D]. 北京: 中国地质大学(北京), 2012.
|
[9] |
Peng M. Joint inversion of magnetotelluric and teleseismic data[D]. Beijing: China University of Geosciences, 2012.
|
[10] |
吴萍萍. 大地电磁和地震面波频散数据联合反演研究[D]. 北京: 中国地质大学(北京), 2019.
|
[10] |
Wu P P. Joint inversion of magnetotelluric and seismic surface wave dispersion datasets[D]. Beijing: China University of Geosciences, 2019.
|
[11] |
Gao G Z, Abubakar A, Habashy T M. Joint petrophysical inversion of electromagnetic and full-waveform seismic data[J]. Geophysics, 2012, 77(3),3-18.
|
[12] |
周丽芬. 大地电磁与地震数据二维联合反演研究[D]. 北京: 中国地质大学(北京), 2012.
|
[12] |
Zhou L F. Two dimensional joint inversion of MT and seismic data[D]. Beijing: China University of Geosciences, 2012.
|
[13] |
Moorkamp M, Roberts A W, Jegen M, et al. Verification of velocity-resistivity relationships derived from structural joint inversion with borehole data[J]. Geophysical Research Letters, 2013, 40(14):3596-3601.
|
[14] |
李桐林, 张镕哲, 朴英哲. 大地电磁测深与地震初至波走时交叉梯度反演[J]. 吉林大学学报:地球科学版, 2015, 45(3):952-961.
|
[14] |
Li T L, Zhang R Z, Pak Y Z. Joint inversion of magnetotelluric and first-arrival wave seismic traveltime with cross-gradient constraints[J]. Journal of Jilin University:Earth Science Edition, 2015, 45(3):952-961.
|
[15] |
Auken E, Christiansen A V. Layered and laterally constrained 2D inversion of resistivity data[J]. Geophysics, 2004, 69(3):752-761.
|
[16] |
王颖. 磁共振与瞬变电磁横向约束联合反演方法研究[D]. 长春: 吉林大学, 2016.
|
[16] |
Wang Y. Study on joint and laterally constrained inversion of MRS and TEM data[D]. Changchun: Jilin University, 2016.
|
[17] |
Auken E, Thomsen P, Sørensen K. Lateral constrained inversion (LCI) of profile oriented data - The resistivity case[C]// Bochum:Proceedings of 6th EAGE/EEGS Meeting, 2000, EL06:124-142.
|
[18] |
Monteiro Santos F A. 1-D laterally constrained inversion of EM34 profiling data[J]. Journal of Applied Geophysics, 2004, 56(2):123-134.
|
[19] |
Auken E, Christiansen A V, Jacobsen L, et al. Laterally constrained 1D:Inversion of 3D TEM data[C]// Symposium on the Application of Geophysics to Engineering and Environmental Problems, 2005:514-518.
|
[20] |
Siemon B, Auken E, Christiansen A V. Laterally constrained inversion of helicopter-borne frequency-domain electromagnetic data[J]. Journal of Applied Geophysics, 2009, 67(3):259-268.
|
[21] |
蔡晶, 齐彦福, 殷长春. 频率域航空电磁数据的加权横向约束反演[J]. 地球物理学报, 2014, 57(3):953-960.
|
[21] |
Cai J, Qi Y F, Yin C C. Weighted Laterally-constrained inversion of frequency-domain airborne EM data[J]. Chinese Journal of Geophysics, 2014, 57(3):953-960.
|
[22] |
殷长春, 邱长凯, 刘云鹤, 等. 时间域航空电磁数据加权横向约束反演[J]. 吉林大学学报:地球科学版, 2016, 46(1):254-261.
|
[22] |
Yin C C, Qiu C K, Liu Y H, et al. Weighted laterally-constrained inversion of time-domain airborne electromagnetic data[J]. Journal of Jilin University:Earth Science Edition, 2016, 46(1):254-261.
|
[23] |
考夫曼, 凯勒. 频率域和时间域电磁测深[M].王建谋,译. 北京: 地质出版社, 1987.
|
[23] |
Kaufman A A, Keller G V. Frequency and time domain electromagnetic sounding[M]. Wang J M,translate. Beijing: Geological Publishing House, 1987.
|
[24] |
Schwab F, Knopoff L. Surface-wave dispersion computations[J]. Bulletin of the Seismological Society of America, 1970, 60(2):321-344.
|
[25] |
Egbert G D, Kelbert A. Computational recipes for electromagnetic inverse problems[J]. Geophysical Journal International, 2012, 189(1):251-267.
|
[26] |
Jackson D D. The use of a priori data to resolve non-uniqueness in linear inversion[J]. Geophysical Journal International, 1979, 57(1):137-157.
|
[27] |
桂兵. 可控源音频大地电磁法张量数据二维反演研究[D]. 北京: 中国地质大学(北京), 2015.
|
[27] |
Gui B. Research of 2D CSAMT tensor data inversion[D]. Beijing: China University of Geosciences, 2015.
|
[28] |
方洪健. 地震体波面波联合反演研究及应用[D]. 合肥: 中国科学技术大学, 2017.
|
[28] |
Fang H J. Joint inversion of seismic body and surface wave data:Methods and applications[D]. Hefei: University of Science and Technology of China, 2017.
|
[29] |
宓彬彬. 复杂浅地表弹性介质面波分析方法研究[D]. 武汉: 中国地质大学, 2018.
|
[29] |
Mi B B. Surface-wave analysis in complicated near-surface elastic media[D]. Wuhan: China University of Geosciences, 2018.
|
[1] |
HAN Shu-He, PEI Qiu-Ming, XU Jian, SONG Zhi-Yong, MO Hai-Bin. Application of comprehensive geophysical prospecting in the exploration of geothermal resources in the Linjiadi area, Aohan Banner, Inner Mongolia[J]. Geophysical and Geochemical Exploration, 2024, 48(4): 962-970. |
[2] |
DONG Jian, LI Xiao-Peng, FU Chao, DANG Zhi-Cai, ZHAO Xiao-Bo, ZENG Qing-Bin, HU Xue-Ping, WANG Jin-Hui. Prospecting for concealed skarn iron deposits using the high-precision gravity-magnetic survey method[J]. Geophysical and Geochemical Exploration, 2024, 48(1): 31-39. |
|
|
|
|