|
|
Assessing radiation levels in the environment by converting total natural gamma radiation into the absorbed dose rate in air: A case study of measured data from Panjia Village, Guiyang County and Tuqiao Village, Yongxing County |
LIU Jun-Feng1( ), PENG Wen-Biao1, TAO Feng1, MENG Fan-Xing1, WEI Guang-Jing1, LIU Hong1, DENG Ju-Zhi2, CHEN Hui2, FU Chen2, WANG Pei-Jian3 |
1. Nuclear Geological Survey of Hunan, Changsha 410008, China 2. School of Geophysics and Measurement-Control Technology, East China University of Technology, Nanchang 330013, China 3. Airborne Survey and Remote Sensing Center of Nuclear Industry, Shijiazhuang 050000, China |
|
|
Abstract China has accumulated massive data on total gamma radiation (γ) from the prolonged extensive surveys of uranium deposits. However, there is a marked lack of studies on radioactive environment assessment using these data. Based on the measurement principles of total gamma radiation and the absorbed dose rate in air, this study ascertained the relationships of the absorbed dose rate in air with the total natural gamma radiation and nuclide content and, accordingly, established the relationship between total gamma radiation and the absorbed dose rate in air. Furthermore, it analyzed the effects of instrument parameters on the measurement error, concluding that there existed a strictly linear relationship between the measured total gamma radiation and the absorbed dose rate in the air when bK/bU = 2.287 and bTh/bU = 0.430. Therefore, the bK/bU and bTh/bU ratios closer to both values correspond to more accurate absorbed dose rates in air converted from the measured total gamma radiation. Using the model of the Hunan Ionizing Radiation Measuring Station, this study calculated the coefficient for converting total gamma radiation into the absorbed dose rate in air, analyzed the error, and deduced the approximate uranium equivalent ranges of potassium and thorium in the instrument parameters. Furthermore, for the rock mass in Panjia Village, Guiyang County, Chenzhou City and the limestone area of Tuqiao Village in Yongxing County of the city, this study measured the total gamma radiation, gamma spectra, and absorbed dose rates in the air at the same stations. The results show that when the average nuclide content ratio CK/CU was less than 1 and CTh/CU ratio was less than 3, the absorbed dose rates in air estimated based on the total gamma radiation (measured using the FD3013 instrument) shared roughly the same error levels with those estimated based on energy spectra using the Beck formula, both yielding root mean square errors below 15%. As inferred from the average CK/CU and CTh/CU ratios of nuclides in China, the absorbed dose rate in air in most areas of China can be estimated using the total gamma radiation measured using an FD3013 instrument (or an instrument with similar performance). Overall, converting the total gamma radiation data from available extensive surveys of uranium deposits into effective absorbed dose rates in the air provides a methodological reference for rapid, large-area assessment of the external exposure level of natural radioactivity in the environment.
|
Received: 13 February 2023
Published: 27 June 2024
|
|
|
|
|
仪器 | NaI(Tl) 晶体体积/cm3 | 能量阈值/ KeV | bK/bU | bTh/bU | A | 29 | 30 | 1.57 | 0.37 | B | 82 | 50 | 1.56 | 0.38 | C | 348 | 400 | 2.37 | 0.41 | D | 348 | 500 | 2.67 | 0.41 |
|
Uranium equivalent of K and Th of different instruments [2]
|
|
Effect of bK/bU ratio and CK/CU ratio on conversion error of total gamma into air absorbed dose rate
|
|
Effect of bTh/bU ratio and CTh/CU ratio on conversion error of total gamma into air absorbed dose rate
|
模型类别 | 当量铀含量 | 空气吸收剂 量率(1m高) | 含量 | QeU/Ur | (nGy·h-1) | QK/ 10-2 | QU/ 10-6 | QTh/ 10-6 | YB-Ⅱ-ZN | 10.72 | 34.94 | 0.40 | 2.50 | 5.11 | YK-Ⅱ-ZN | 20.04 | 98.65 | 5.36 | 3.23 | 8.66 | YU2-Ⅱ-ZN | 48.57 | 211.56 | 0.34 | 38.57 | 5.82 | YU1-Ⅱ-ZN | 158.25 | 706.40 | 0.31 | 140.61 | 8.79 | YTh-Ⅱ-ZN | 85.21 | 433.04 | 0.32 | 4.16 | 187.13 | YM-Ⅱ-ZN | 128.72 | 635.51 | 3.67 | 60.60 | 139.64 |
|
Model nominal data of ionizing radiation measuring station in Hunan Province
|
模型类别 | 贴近模型表面计算的总计数率/cps | 仪器A | 仪器B | 仪器C | 仪器D | YK-Ⅱ-ZN | 14.74 | 14.88 | 19.48 | 21.09 | YU2-Ⅱ-ZN | 41.25 | 41.31 | 41.76 | 41.86 | YU1-Ⅱ-ZN | 144.34 | 144.43 | 144.95 | 145.04 | YTh-Ⅱ-ZN | 73.89 | 75.77 | 81.64 | 81.74 | YM-Ⅱ-ZN | 117.96 | 119.39 | 126.55 | 127.65 |
|
The total number rate calculated by the standard model K, U, Th content
|
模型类别 | 贴近模型表面计算得到的当量铀含量/相对误差 | 标称当量铀/Ur | 仪器A | 仪器B | 仪器C | 仪器D | YK-Ⅱ-ZN | 17.33/-13.52 | 17.32/-13.57 | 20.82/3.89 | 22.15/10.529 | 20.04 | YU2-Ⅱ-ZN | 48.49/-0.16 | 48.09/-0.99 | 44.64/-8.09 | 43.97/-9.47 | 48.57 | YU1-Ⅱ-ZN | 169.68/7.22 | 168.14/6.25 | 154.94/-2.09 | 152.36/-3.72 | 158.25 | YTh-Ⅱ-ZN | 86.86/1.94 | 88.21/3.52 | 87.26/2.41 | 85.87/0.77 | 85.21 | YM-Ⅱ-ZN | 138.67/7.73 | 138.99/7.98 | 135.27/5.09 | 134.09/4.17 | 128.72 | 均方根误差/% | 5.46 | 4.99 | 3.12 | 4.40 | |
|
Equivalent uranium and error calculated by standard model K, U, Th content
|
模型类别 | 当量铀估算离模型1m高的吸收剂量率/相对误差 | 标称空气吸收剂量 率/(nGy·h-1) | 仪器A | 仪器B | 仪器C | 仪器D | YK-Ⅱ-ZN | 82.44/-16.43 | 82.38/-16.49 | 98.68/0.035 | 104.94/6.38 | 98.65 | YU2-Ⅱ-ZN | 230.7/9.05 | 228.69/8.1 | 211.55/-0.028 | 208.28/-1.55 | 211.56 | YU1-Ⅱ-ZN | 807.25/14.28 | 799.57/13.19 | 734.31/3.95 | 721.67/2.16 | 706.4 | YTh-Ⅱ-ZN | 413.24/-4.57 | 419.46/-3.14 | 413.58/-4.49 | 406.71/-6.08 | 433.04 | YM-Ⅱ-ZN | 659.72/3.81 | 660.95/4.00 | 641.1/0.88 | 635.14/-0.058 | 635.51 | 均方根误差/% | 7.68 | 7.33 | 1.91 | 2.91 | |
|
According to the coefficient, the equivalent uranium is estimated as the absorbed dose rate of air and the error
|
模型类别 | 当量铀QeU/Ur | 仪器1316 | 仪器1299 | 仪器1320 | YK-Ⅱ-ZN | 20.33 | 19.97 | 19.66 | YU2-Ⅱ-ZN | 47.47 | 47.75 | 46.94 | YU1-Ⅱ-ZN | 156.62 | 156.71 | 158.67 | YTh-Ⅱ-ZN | 88.71 | 87.25 | 84.57 | YM-Ⅱ-ZN | 132.23 | 126.47 | 131.08 |
|
Measured values on the model after instrument calibration
|
模型类别 | 实测当量铀估算为离模型 1m高度的吸收剂量率/误差 | 标称空气吸 收剂量率/ (nGy·h-1) | 1316 | 1299 | 1320 | YK-Ⅱ-ZN | 95.56/-3.13 | 95.32/-3.38 | 94.16/-4.55 | 98.65 | YU2-Ⅱ-ZN | 223.16/5.49 | 227.93/7.74 | 224.78/6.25 | 211.56 | YU1-Ⅱ-ZN | 736.39/4.25 | 748.02/5.89 | 759.89/7.57 | 706.4 | YTh-Ⅱ-ZN | 417.1/-3.68 | 416.49/-3.82 | 405.01/-6.47 | 433.04 | YM-Ⅱ-ZN | 621.71/-2.17 | 603.67/-5.01 | 627.76/-1.22 | 635.51 | 均方根误差/% | 2.76 | 3.81 | 4.00 | |
|
Estimation of equivalent uranium as air absorbed dose rate and error based on coefficients
|
|
Energy spectrum, equivalent uranium estimated air absorbed dose rate and measured air absorbed dose rate contour map
|
估算方式 | 测量地点 | 测量点位数量 | |相对误差|/% | 均方相对误差/% | 最小值 | 最大值 | 平均值 | 利用Beck公式将γ能谱估算空气吸收剂量 | 桂阳县潘家村 | 257 | 0.0045 | 46.00 | 9.80 | 9.08 | 永兴县土桥村 | 244 | 0.22 | 45.24 | 12.94 | 9.26 | 利用FD3013测得的当量铀估算空气吸收剂量率 | 桂阳县潘家村 | 257 | 0.17 | 40.10 | 10.39 | 8.76 | 永兴县土桥村 | 244 | 0.06 | 46.76 | 12.01 | 10.20 |
|
The error analysis between the estimated and measured air absorbed dose rates by equivalent uranium and γ energy spectra
|
[1] |
Beck H L, DeCampo J, Gogolak C. In situ Ge(Li) and Na(Tl) gamma-ray spectrometry[R]. New York: Health and Safety Laboratory (AEC),1972.
|
[2] |
IAEA. The us of gamma ray data to definethe natural radiation environment[R]. Austria:IAEA,1990.
|
[3] |
Grasty R L. Airborne gamma ray spectrometer surveying[R]. Vienna:IAEA,1991.
|
[4] |
Podgorsak R B M B. Gamma-ray spectrometry in the environment[J]. Medical Physics, 1996, 23(2):281.
|
[5] |
沈正新, 胡明考. 航放数据用于评价天然辐射水平的可行性研究[J]. 航测与遥感, 2002, 1(2):43-49.
|
[5] |
Shen Z X, Hu M K. Feasibility study on using airborne radiometric data to evaluate natural radiation levels[J]. Aerial and Remote Sensing, 2002, 1(2):43-49.
|
[6] |
侯振荣, 顾仁康, 胡明考, 等. 利用已有航测找铀资料和技术方法评价天然辐射水平[J]. 辐射防护通讯, 2002, 22(3):23-26.
|
[6] |
Hou Z R, Gu R K, Hu M K, et al. Evaluatitlg natural radiation level by using existing airborne data for uranium prospecting[J]. Radiation Protection Bulletin, 2002, 22(3):23-26.
|
[7] |
王南萍, 黄英, 肖磊, 等. 伽马能谱测量在陆地伽马空气吸收剂量率评价中的应用[J]. 物探与化探, 2004, 28(6):512-514,517.
|
[7] |
Wang N P, Huang Y, Xiao L, et al. The application of gamma-ray spectrometry to estimationg terrain gamma-ray dose in air[J]. Geophysical and Geochemical Exploration, 2004, 28(6):512-514,517.
|
[8] |
黄元清. 城市环境天然放射性评价研究[D]. 成都: 成都理工大学, 2005.
|
[8] |
Huang Y Q. The Research on the evaluation of urban environmental natural radioactivity[D]. Chengdu: Chengdu University of Technology, 2005.
|
[9] |
刘合凡, 曾兵, 侯克斌, 等. 成都市土壤天然放射性核素的外照射水平估算研究[J]. 环境监控与预警, 2009, 1(2):37-40.
|
[9] |
Liu H F, Zeng B, Hou K B, et al. Estimation of natural terrestrial external exposure levels of nuclides in soils in Chengdu[J]. Environmental Monitoring and Forewarning, 2009, 1(2):37-40.
|
[10] |
葛良全, 赖万昌, 黄元清, 等. 运用1∶50 000化探数据评价天然放射性水平[J]. 成都理工大学学报:自然科学版, 2008, 35(3):323-327.
|
[10] |
Ge L Q, Lai W C, Huang Y Q, et al. Evaluation of natural radioactivity levels using 1∶50,000 geochemical data[J]. Journal of Chengdu University of Technology:Natural Science Edition, 2008, 35 (3):323-327.
|
[11] |
李金凤, 刘合凡, 徐健, 等. 运用1∶25万化探数据进行区域天然放射性填图评价[J]. 铀矿地质, 2016, 32(2):110-116.
|
[11] |
Li J F, Liu H F, Xu J, et al. Regional evaluation and mapping of natural radioactivity with 1∶250,000 geochemical data[J]. Uranium Geology, 2016, 32(2):110-116.
|
[12] |
余根锌. 福建省环境地表γ辐射剂量率估算与人居环境安全性评价[J]. 物探与化探, 2021, 45(1):192-199.
|
[12] |
Yu G X. The environmental terrestrial gamma-radiation dose rate estimation and the living environment safety evaluation in Fujian Province[J]. Geophysical and Geochemical Exploration, 2019, 45(1):192-199.
|
[13] |
李家俊. 利用γ测量数据进行环境天然放射性水平调查研究[C]// 1995年中国地球物理学会第十一届学术年会论文集,1995:458.
|
[13] |
Li J J. Investigation of natural radioactivity level in the environment using gamma measurement data[C]// Proceedings of the 11th Annual Conference of Geophysical Society of China,1995:458.
|
[14] |
IAEA. Guidelines for radioelement mapping using gamma ray spectrometry data[R]. Austria:IAEA. 2013.
|
[15] |
田义宗, 赵锋, 李钢. Beck公式在滨海新区辐射环境本底调查中的验证[J]. 中国辐射卫生, 2011, 20(3):336-337.
|
[15] |
Tian Y Z, Zhao F, Li G. Verification of Beck's formula in the background investigation of radiation environment in Binhai New Area[J]. China Radiation Health, 2011, 20 (3) :336-337.
|
[16] |
Beck H L, Adams J A S, Lowder W M, et al. Physics of environmental gamma radiation fields[J]. Natural Radiation Environment II, 1972, 9(1):120-125.
|
[17] |
Tanner A B. Radon migration in the ground:A supplementary review[J]. Natural Radiation Environment, 1978, 15(1):215-221.
|
[18] |
ICRU. Gamma-ray spectrometry in the environment[R]. Sweden:ICRU,1994.
|
[19] |
罗国祯, 支仲骥, 王树明, 等. 中国环境天然放射性水平[M]. 北京: 地质出版社, 2005.
|
[19] |
Luo G Z, Zhi Z J, Wang S M, et al. Investigation of environmental natural radioactivity in China[M]. Beijing: Geological Publishing House, 2005.
|
[20] |
程业勋, 王南萍, 候胜利. 核辐射场与放射性勘查[M]. 北京: 地质出版社, 2005.
|
[20] |
Cheng Y X, Wang N P, Hou S L. Nuclear radiation field and radioactive exploration[M]. Beijing: Geological Publishing House, 2005.
|
[21] |
曹龙生, 杨亚新, 张叶, 等. 中国大陆主要省份土壤中天然放射性核素含量分布规律研究[J]. 东华理工大学学报:自然科学版, 2012, 35(2):167-172.
|
[21] |
Cao L S, Yang Y X, Zhang Y, et al. Distribution pattern of radionuclides in the soil of mainland China[J]. Journal of East China University of Technology:Natural Science Edition, 2012, 35(2):167-172.
|
[1] |
LI Ying-Bin, XIE Ming-Hong, ZHANG Zhan-Bin, LI Yi, WEI Bin, ZHANG Wei. The application of comprehensive geophysical method to the exploration of uranium deposits in the paleo-Shibei area of Shanghang Basin[J]. Geophysical and Geochemical Exploration, 2020, 44(6): 1283-1293. |
[2] |
FAN Zheng-guo, YU Chang-chun. A NEW TERRAIN CORRECTION TECHNIQUE IN AIR-BORNE GAMMA-RAY SPECTROMETER SURVEY AND ITS APPLICATION[J]. Geophysical and Geochemical Exploration, 2005, 29(1): 28-30,33. |
|
|
|
|