|
|
The migration,transformation and ecological effects of heavy metals in soil-cropsystem in Lipu, Guangxi |
JIANG Yu-Xiong1,2( ), WEN Mei-Lan1, PAN Qi-Ming2( ), JIANG Bo-Chang2, WANG Zhong-Wei2 |
1. College of Earth Sciences,Guilin University of Technology, Guilin 541006, China 2. Regional Geological Survey Research Institute of Guangxi, Guilin541003, China |
|
|
Abstract In order to understand the content and distribution characteristics of heavy metals in soil and crops in Lipu,soil and crops (rice, Lipu taro, citrus, water chestnut) were collected. Todetermine the pH value of soil samples and the total amount of As, Cd, Cr, Hg, Ni, Pb, Cu, Zn and the form content of As, Cd, Cr, Hg, and Pb.The content of As, Cd, Cr, Hg, Pb in crop samples was measured.The bioconcentration factor (BCF) of heavy metal elements was calculated. The migration and transformation and ecological effects of heavy metal in the soil-crop system are analyzed. The results showed that:① The topsoil in the study area is predominantly acidic in the study area. The average contents of As, Cd, Cr, Hg, Ni, Pb, Cu, and Zn in the surface soil in the area were 13.57×10-6, 0.33×10-6, 87.06×10-6, 0.153×10-6, 27.49×10-6, 30.46×10-6, 27.94×10-6, 82.53×10-6.Respectively, all of which were higher than the national soil background values.②The heavy metal content in rice crops is higher than that in Lipu taro, citrus, and horseshoe.The heavy metal content is also different in rice roots, stems, and seeds.③ The bioaccumulation coefficient of heavy metal was generally high in rice. When comparing different parts of rice, the bioconcentration coefficients of heavy metals were greatest in the roots and least in the seeds. And when comparing different crops, the migration capacity of heavy metals in the soil-rice system was significantly higher than that of Lipu taro, citrus and water chestnut.④ The exchangeable state of Cd in the study area is significantly higher than As, Cr, Hg, and Pb. Cd is the most active soil heavy metal in the study area, it should be paid more attention to prevent excessive Cd in crops from causing harm to people.
|
Received: 17 December 2021
Published: 27 June 2024
|
|
|
|
|
3]) 1—Guiping Formation;2—Wanggao Formation;3—Gufeng Formation;4—Qixia Formation;5—Dapu Formation;6—Huangjin Formation;7—Yingtang Formation;8—Luzhai Formation;9—Rongxian Formation;10—Wuzhishan Formation;11—Liujiang Formation;12—Dongcun Formation;13—Guilin Formation;14—Baqi Formation;15—Tangjiawan Formation;16—Donggangling Formation;17—Xindu Formation;18—upper section of the Xindu Formation;19—lower section of the Xindu Formation;20—Sipai Formation;21—Dale Formation;22—Hexian Formation;23—Lianhuashan Formation; 24—consolidated rock boundaries;25—rock production;26—measured positive faults;27—measured reverse faults; 28—regional faults;29—working area;30—rivers;31—limestone ore (bed) points;32—clay ore (bed) points;33—lead ore (bed) points;34—iron ore (bed) points;35—manganese ore (bed) points (beds) points;36—polymetallic ore (beds) points;37—gold ore (beds) points;38—silicification ">
|
Geological map of the study area (modified according to the reference[3]) 1—Guiping Formation;2—Wanggao Formation;3—Gufeng Formation;4—Qixia Formation;5—Dapu Formation;6—Huangjin Formation;7—Yingtang Formation;8—Luzhai Formation;9—Rongxian Formation;10—Wuzhishan Formation;11—Liujiang Formation;12—Dongcun Formation;13—Guilin Formation;14—Baqi Formation;15—Tangjiawan Formation;16—Donggangling Formation;17—Xindu Formation;18—upper section of the Xindu Formation;19—lower section of the Xindu Formation;20—Sipai Formation;21—Dale Formation;22—Hexian Formation;23—Lianhuashan Formation; 24—consolidated rock boundaries;25—rock production;26—measured positive faults;27—measured reverse faults; 28—regional faults;29—working area;30—rivers;31—limestone ore (bed) points;32—clay ore (bed) points;33—lead ore (bed) points;34—iron ore (bed) points;35—manganese ore (bed) points (beds) points;36—polymetallic ore (beds) points;37—gold ore (beds) points;38—silicification
|
|
Bitmap of crop sampling points
|
序号 | 提取方法 | 相态 | 测试方法 | 1 | 2.5000 g样品25 mL水提取 | 水溶态 | ICP-MS测定Pb、 Cd、Cr, AFS测定As、Hg | 2 | 残渣用25 mL MgCl2溶液提取 | 离子交换态 | 3 | 残渣用25 mL NaAc溶液提取 | 碳酸盐结合态 | 4 | 残渣用50 mL Na4P2O7溶液提取 | 腐殖酸结合态 | 5 | 残渣用25 mL HONH3Cl溶液提取 | 铁锰氧化态 | 6 | 残渣用8 mL H2O2-HNO3溶液恒温水浴提取 | 强有机结合态 | 7 | 0.2000 g残渣,HNO3-HClO4溶解 | 残渣态 |
|
Matching scheme of soil heavy metal speciation analysis method
|
元素 | 均值/10-6 | 变异系数 | 极小值/10-6 | 极大值/10-6 | 全国土壤背景值[8] /10-6 | 广西土壤背景值[8] /10-6 | As | 13.57 | 1.10 | 1.22 | 278.00 | 11.2 | 20.50 | Cd | 0.33 | 1.46 | 0.03 | 9.24 | 0.10 | 0.27 | Cr | 87.06 | 0.57 | 12.60 | 785.00 | 61.00 | 82.10 | Hg | 0.15 | 0.65 | 0.02 | 1.61 | 0.07 | 0.15 | Ni | 27.49 | 0.88 | 5.45 | 513.00 | 26.90 | 26.60 | Pb | 30.46 | 0.45 | 10.30 | 354.00 | 26.00 | 24.00 | Cu | 27.94 | 0.47 | 6.20 | 182.00 | 22.60 | 27.80 | Zn | 82.53 | 0.55 | 18.70 | 414.00 | 74.20 | 75.60 |
|
Statistical characteristic values of heavy metal elements in soil(n=3967)
|
| 元素 | 均值/10-6 | 标准差/10-6 | 变异系数 | 极小值/10-6 | 极大值/10-6 | 中值/10-6 | 水稻籽实 (n=30) | As | 0.183 | 0.153 | 0.837 | 0.110 | 0.950 | 0.150 | Cd | 0.138 | 0.278 | 2.016 | 0.006 | 1.190 | 0.030 | Cr | 0.099 | 0.013 | 0.127 | 0.082 | 0.120 | 0.095 | Hg | 0.006 | 0.008 | 1.351 | 0.002 | 0.043 | 0.003 | Pb | 0.057 | 0.004 | 0.073 | 0.050 | 0.069 | 0.057 | 水稻茎叶 (n=10) | As | 2.655 | 1.075 | 0.405 | 0.590 | 4.800 | 2.565 | Cd | 0.639 | 0.782 | 1.224 | 0.014 | 2.210 | 0.209 | Cr | 4.269 | 0.598 | 0.14 | 3.470 | 5.040 | 4.405 | Hg | 0.009 | 0.001 | 0.166 | 0.007 | 0.011 | 0.008 | Pb | 0.386 | 0.124 | 0.322 | 0.260 | 7.000 | 0.350 | 水稻根 (n=10) | As | 62.29 | 40.21 | 0.646 | 13.900 | 140.000 | 57.650 | Cd | 1.307 | 1.413 | 1.081 | 0.068 | 3.410 | 0.550 | Cr | 22.18 | 7.242 | 0.326 | 14.300 | 35.60 | 20.750 | Hg | 0.021 | 0.007 | 0.336 | 0.012 | 0.034 | 0.023 | Pb | 5.332 | 1.846 | 0.346 | 2.310 | 8.190 | 5.485 | 荔浦芋 (n=18) | As | 0.009 | 0.002 | 0.176 | 0.006 | 0.012 | 0.008 | Cd | 0.095 | 0.061 | 0.647 | 0.008 | 0.185 | 0.097 | Cr | 0.030 | 0.005 | 0.171 | 0.017 | 0.041 | 0.030 | Hg | 0.002 | 0.001 | 0.423 | 0.000 | 0.003 | 0.002 | Pb | 0.032 | 0.015 | 0.456 | 0.012 | 0.062 | 0.030 | 柑橘 (n=46) | As | 0.0076 | 0.0013 | 0.166 | 0.0059 | 0.0110 | 0.0076 | Cd | 0.0011 | 0.0002 | 0.183 | 0.0000 | 0.0016 | 0.0011 | Cr | 0.0239 | 0.0028 | 0.119 | 0.0200 | 0.0330 | 0.0230 | Hg | 0.0002 | 0.0000 | 0.219 | 0.0001 | 0.0002 | 0.0002 | Pb | 0.0121 | 0.0023 | 0.186 | 0.0100 | 0.0230 | 0.0120 | 马蹄 (n=18) | As | 0.028 | 0.012 | 0.426 | 0.011 | 0.062 | 0.028 | Cd | 0.002 | 0.002 | 0.650 | 0.001 | 0.006 | 0.002 | Cr | 0.017 | 0.003 | 0.152 | 0.014 | 0.023 | 0.017 | Hg | 0.002 | 0.001 | 0.339 | 0.001 | 0.003 | 0.002 | Pb | 0.008 | 0.003 | 0.408 | 0.004 | 0.013 | 0.007 |
|
Characteristic values of heavy metal contents in crop samples
|
|
Column of the comparison of the average content of heavy metals in different parts of rice
|
农作物种类 | As | Cd | Cr | Hg | Pb | 水稻籽实 | 0.003~0.040 | 0.007~6.879 | 0~0.002 | 0.003~0.223 | 0~0.003 | 水稻茎叶 | 0.063~0.420 | 0.040~4.010 | 0.010~0.080 | 0.008~0.030 | 0.006~0.020 | 水稻根 | 0.310~7.500 | 0.420~4.480 | 0.320~0.410 | 0.060~0.210 | 0.130~0.290 | 马蹄 | 0.0025~0.0831 | 0.0102~0.1242 | 0.0030~0.0019 | 0.0224~0.1517 | 0.0008~0.0027 | 荔浦芋 | 0.0009~0.0013 | 0.0373~2.6347 | 0.0005~0.0016 | 0.0071~0.0698 | 0.0015~0.0074 | 柑橘 | 0.0001~0.0023 | 0~0.0114 | 0~0.0040 | 0.0002~0.0027 | 0.0001~0.0013 |
|
Variation range of bioconcentration coefficient of different crops
|
形态 | Cd | Pb | As | Hg | Cr | 可交换态(水溶态+ 离子交换态) | 23.69 | 2.04 | 0.82 | 0.22 | 0.24 | 碳酸盐结合态+腐殖酸 结合态+铁锰结合 态+强有机结合态 | 63.02 | 56.12 | 7.14 | 38.93 | 8.31 | 残渣态 | 13.27 | 41.84 | 92.04 | 60.85 | 91.45 |
|
The percentage of different chemical forms of heavy metals%
|
|
Chemical fractions of heavy metals in soil samples
|
|
Logarithmic comparison of Cd, Hg, Pb exchangeable content and Cd, Hg, Pb content in rice
|
|
Logarithmic comparison of Cd, Hg, Pb exchangeable content and Cd, Hg, Pb content in citrus
|
|
Logarithmic comparison of Cd, Hg, Pb exchangeable content and Cd, Hg, Pb content in horseshoe
|
|
Logarithmic comparison of Cd, Hg, Pb exchangeable content and Cd, Hg, Pb content in Lipu taro
|
[1] |
赵秀芳, 王艺璇, 张永帅, 等. 山东安丘地区土壤—小麦系统重金属等元素间的相互作用[J]. 现代地质, 2020, 4(5):936-944.
|
[1] |
Zhao X Z, Wang Y X, Zhang Y S, et al. Geochemical characteristics and environmental assessment of heavy metal elements in agricultural soil of Anqiu area,Shangdong Province[J]. Geophysical and Geochemical Exploration, 2020, 4(5):936-944.
|
[2] |
Jose R P V, Martha L L, Mahesh N, et al. The biochemistry of environmental heavy metal uptake by plants:Implications for the food chain[J]. International Journal of Biochemistry and Cell Biology, 2009, 41(8):1665-1677.
|
[3] |
广西荔浦县土地质量地球化学评价报告[R]. 广西壮族自治区地质矿产勘查开发局, 2018.
|
[3] |
Geochemical evaluation report of land quality in Lipu County, Guangxi[R]. Bureau of Geology and Mineral Exploration and Development of Guangxi Zhuang Autonomous Region, 2018.
|
[4] |
DZ/T 0258—2014多目标区域地球化学调查规范(1∶250 000)[S].
|
[4] |
DZ/T 0258—2014 Specification for multi-objective regional geochemical survey(1∶250 000)[S].
|
[5] |
DZ/T 0253.1—2014生态地球化学动植物样品分析方法[S].
|
[5] |
DZ/T 0253.1—2014 Methods for analysis of animal and plant samples in ecological geochemistry[S].
|
[6] |
Vre A M, Davidson C M. Chemical speciation in the environment[M]. Tokyo: Black Well Science, 2001.
|
[7] |
DD 2005—03生态地球化学评价样品分析技术要求(试行)[S].
|
[7] |
DD 2005—03 Technical requirements for analysis of ecological geochemical evaluation samples (Trial)[S].
|
[8] |
魏复盛, 陈静生, 吴燕玉. 中国土壤元素背景值[M]. 北京: 中国环境科学出版社,1990.
|
[8] |
Wei F S, Chen J S, Wu Y Y. Background values of soil elements in China[M]. Beijing: China Environmental Science Press,1990.
|
[9] |
Chen H Y, Teng Y G, Lu S J, et al. Contamination features and health risk of soil heavy metals in China[J]. Science of The Total Environment, 2015, 512-513(5):143-153.
|
[10] |
罗慧, 刘秀明, 王世杰, 等. 中国南方喀斯特集中分布区土壤Cd污染特征及来源[J]. 生态学杂志, 2018, 37(5):1538-1544.
|
[10] |
Luo H, Liu X M, Wang S J, et al. Pollution characteristics and sources of cadmium in soils of the karst area in South China[J]. Chinese Journal of Ecology, 2018, 37(5):1538-1544.
|
[11] |
唐世琪, 刘秀金, 杨柯, 等. 典型碳酸盐岩区耕地土壤剖面重金属形态迁移转化特征及生态风险评价[J]. 环境科学, 2021, 42(8):1-15.
|
[11] |
Tang S Q, Liu X J, Yang K, et al. Migration and transformation characteristics andecological risk evaluation of heavy metal fractions in cultivated land soil profiles at a typical carbonate covering area[J]. Environmental Science, 2021, 42(8):1-15.
|
[12] |
孙子媛, 文雪峰, 吴攀, 等. 喀斯特地区典型风化剖面重金属超标程度及元素迁移特征研究[J]. 地球与环境, 2019, 47(1):50-56.
|
[12] |
Sun Z Y, Wen X F, Wu P, et al. Excessivedegrees and migration characteristics of heavy metals in typical weathering profiles in Karst areas[J]. Earth and Environment, 2019, 47(1):50-56.
|
[13] |
李杰, 朱立新, 康志强. 南宁市郊周边农田土壤—农作物系统重金属元素迁移特征及其影响因素[J]. 中国岩溶, 2018, 37(1):43-52.
|
[13] |
Li J, Zhu L X, Kang Z Q. Characteristics of transfer and their influencing factors of heavy metals in soil-corp system of peri-urban agricultural soils of Nanning,South China[J]. Carsologica Sinica, 2018, 37(1):43-52.
|
[14] |
赵方杰. 水稻砷的吸收机理及阻控对策[J]. 植物生理学报, 2014, 50(5):569-576.
|
[14] |
Zhao F J. Mechanism of arsenic absorption in rice and countermeasures of resistance and control[J]. Journal of Plant Physiology, 2014, 50(5):569-576.
|
[15] |
陈怀满. 土壤中化学物质的行为与环境质量[M]. 北京: 科学出版社,2002:23-45.
|
[15] |
Chen H M. Behavior of chemical substances in soil and environmental quality[M]. Beijing: Science Press,2002:23-45.
|
[16] |
Rebecca A E, Bradley E S, Suter G W. Uptake of inorganic chemicals from soil by plant leaves:Regressions of field data[J]. Environmental Toxicology and Chemistry, 2001, 20(11):2561-2571.
|
[17] |
关共凑, 徐颂, 黄金国. 重金属在土壤—水稻体系中的分布、变化及迁移规律分析[J]. 生态环境, 2006, 4(2):315-318.
|
[17] |
Guan G C, Xu S, Huang J G. Distribution, change and migration of heavy metals in soil rice system[J]. Ecological Environment, 2006, 4(2):315-318.
|
[18] |
马宏宏, 彭敏, 刘飞, 等. 广西典型碳酸盐岩区农田土壤-作物系统重金属生物有效性及迁移富集特征[J]. 环境科学, 2020, 41(1):449-459.
|
[18] |
Ma H H, Peng M, Liu F, et al. Bioavailability,translocation,andaccumulationcharacteristic of heavy metals in a soil-crop system from a typical carbonate rock area in Guangxi,China[J]. Environmental Science, 2020, 41(1):449-459.
|
[19] |
王晓娟, 王文斌, 杨龙, 等. 重金属镉(Cd)在植物体内的转运途径及其调控机制[J]. 生态学报, 2015, 35(23):7921-7929.
|
[19] |
Wang X J, Wang W B, Yang L, et al. Transport pathways of cadmium (Cd) and its regulatory mechanisms in plant[J]. Acta Ecologica Sinica, 2015, 35(23):7921-7929.
|
[20] |
谢丽萍, 李焘, 蒋翠文, 等. 重金属镉、汞、铜和铅在荸荠体内的累积特性研究[J]. 西南农业学报, 2018, 31(8):1712-1716.
|
[20] |
Xie L P, Li T, Jiang C W, et al. Study on accumulation characteristics of heavy metals of cadmium,mercury,copper and lead in water chestnut[J]. Southwest China Journal of Agricultural Sciences, 2018, 31(8):1712-1716.
|
[21] |
邹日. 芋头对重金属的富集规律及对镉、铅胁迫的响应[D]. 烟台: 鲁东大学, 2012.
|
[21] |
Zou R. Enrichment of heavy metals in taro and its response to cadmium and lead stress[D]. Yantai: Ludong university, 2012.
|
[22] |
宋波, 田美玲, 庞瑞, 等. 桂北某铅锌矿影响区土壤和柑橘中重金属含量及柑橘产业再优化研究[J]. 生态与农村环境学报, 2019, 35(10):1268-1273.
|
[22] |
Song B, Tian M L, Pan R, et al. Concentrations of heavy metal contents in soil and citrus,and citrus industry optimization near a lead and zinc mine in northern Guangxi[J]. Journal of Ecology and Rural Environment, 2019, 35(10):1268-1273.
|
[23] |
Baker A J M. Accumulators and excluders-strategies in the response of plants to heavy metals[J]. Journal of Plant Nutrition, 1981, 3(1-4):643-654.
|
[24] |
张德存, 杨军, 等. 湖北省江汉流域经济区农业地质调查总报告[R]. 湖北省地质调查院, 2011.
|
[24] |
Zhang D C, Yang J, et al. General report on agricultural geological survey of Jianghan River Basin Economic Zone in Hubei Province[R]. Hubei Geological Survey Institute, 2011.
|
[25] |
唐文忠, 孙柳, 单保庆. 土壤/沉积物中重金属生物有效性和生物可利用性的研究进展[J]. 环境工程学报, 2019, 13(8):1775-1790.
|
[25] |
Tang W Z, Sun L, Shan B Q. Research progress on bioavailability and bioavailability of heavy metals in soil/sediment[J]. Journal of Environmental Engineering, 2019, 13(8):1775-1790.
|
[26] |
Zhao K L, Liu X M, Zhang W W, et al. Spatial dependence and bioavailability of metal fractions in paddy fields on metal concentrations in rice grain at a regional scale[J]. Journal of Soils and Sediments, 2011, 11(7):1165-1177.
|
[27] |
马宏宏, 彭敏, 郭飞, 等. 广西典型岩溶区农田土壤—作物系统Cd迁移富集影响因素[J]. 环境科学, 2021, 42(3):1514-1522.
|
[27] |
Ma H H, Peng M, Guo F, et al. Factors affecting the translocation and accumulation of cadmium in a soil crop system in a typical Karst area of Guangxi Province,China[J]. Environmental Science, 2021, 42(3):1514-1522.
|
[28] |
赵万伏, 宋垠先, 管冬兴, 等. 典型黑色岩系分布区土壤重金属污染与生物有效性研究[J]. 农业环境科学学报, 2018, 37(7):1332-1341.
|
[28] |
Zhao W F, Song Y X, Guan D X, et al. Study on soil heavy metal pollution and bioavailability in typical black rock series distribution area[J]. Journal of Agricultural Environmental Science, 2018, 37(7):1332-1341.
|
[29] |
Baker A J M. Metal tolerance[J]. New Phytol, 1987, 106(S):93-111.
|
[1] |
XIE Kui-Rui, SONG Xu-Feng, ZHOU Kun, ZHOU Yu-Guo, SHE Zhong-Ming, TANG Jian. REE geochemical anomalies in soils of the Ximeng-Lancang area in southwestern Yunnan and their discovery and their implications for ore prospecting[J]. Geophysical and Geochemical Exploration, 2024, 48(3): 660-667. |
[2] |
GAO Peng-Li, REN Da-Lu, LI Chao-Hui, FENG Zhi-Qiang, MIAO Hong-Yun, QIAO Lin, WANG Jian-Wu, YANG Yong-Liang, ZHANG Li-Ming, LI Guang-Hui. Predicting the spatial distribution of soil organic matter using the model consisting of the Boruta algorithm and the optimized GA combined with the geostatistical method[J]. Geophysical and Geochemical Exploration, 2024, 48(3): 747-758. |
|
|
|
|