|
|
A data augmentation method for semi-airborne transient electromagnetic noise based on a generative adversarial network |
FENG Wei1( ), FENG Hao2, XIAO Li-Jiang1, CHEN Pin-Ming1, LIU Dong2,3, WANG Yong-Xin2,4( ), ZHOU Xiao-Sheng2,3, SUN Huai-Feng2, WANG Zhen2,5 |
1. Zhejiang Communications Construction Group Co., Ltd., Hangzhou 310000, China 2. Geotechnical and Structural Engineering Research Center, Shandong University, Jinan 250061, China 3. Guangxi Communications Investment Group Corporation Ltd., Nanning 530022, China 4. Shandong Provincial Communications Planning and Design Institute Group Co., Ltd., Jinan 250101, China 5. Beijing Research Institute of Shandong University, Beijing 100873, China |
|
|
Abstract The semi-airborne transient electromagnetic (SATEM) noise data, exhibiting intricate forms, high acquisition costs, and small volumes, cannot be augmented using conventional augmentation methods, thus significantly hindering the subsequent denoising work. Hence, this study proposed a data augmentation method for SATEM signals based on the generative adversarial network (GAN). By designing the generator as a long short-term memory (LSTM) network and training the generator and discriminator models based on the dataset of real-measured SATEM noise, this study obtained a generator model that can generate simulated noise data. Then, this study analyzed the distributions of the simulated noise generated by the generator and the real-measured noise. Moreover, this study compared the performance of the denoising network before and after augmentation, demonstrating the effectiveness of this method for augmenting real-measured SATEM noise data.
|
Received: 22 May 2023
Published: 27 June 2024
|
|
|
|
|
|
The schematic of GAN structure
|
|
The schematic diagram of LSTM unit structure
|
|
The schematic of generator G structure
|
|
Single sample point noise data
|
|
Single cycle noise data
|
实验环境 | 参数配置 | 操作系统 | Windows 10 | 编程环境 | python 3.6.13 | 深度学习框架 | tensorflow-gpu 1.15.0 | CPU型号 | AMD Ryzen 7 5800 8-Core Processor @3.40 GHz,16.0 GB RAM | CUDA版本 | CUDA 10.0 | GPU型号 | NVIDIA GeForce GTX1650 |
|
Experimental Environment
|
|
Real noise data and simulate noise data form
|
|
Gaussian distribution plot of real noise data and simulated noise data
|
|
Distribution chart of signal-to-noise ratio and correlation coefficient before and after denoising of synthetic data with noise a—signal-to-noise ratio and correlation coefficient of data before noise reduction; b—signal-to-noise ratio and correlation coefficient of data after noise reduction (without using augmented data); c—signal-to-noise ratio and correlation coefficient of data after noise reduction (using augmented data); d—the difference in denoising results between using and without using augmented data
|
[1] |
李术才, 刘斌, 孙怀凤, 等. 隧道施工超前地质预报研究现状及发展趋势[J]. 岩石力学与工程学报, 2014, 33(6):1090-1113.
|
[1] |
Li S C, Liu B, Sun H F, et al. State of art and trends of advanced geological prediction in tunnel construction[J]. Chinese Journal of Rock Mechanics and Engineering, 2014, 33(6):1090-1113.
|
[2] |
李术才, 李树忱, 张庆松, 等. 岩溶裂隙水与不良地质情况超前预报研究[J]. 岩石力学与工程学报, 2007, 26(2):217-225.
|
[2] |
Li S C, Li S C, Zhang Q S, et al. Forecast of Karst-fractured groundwater and defective geological conditions[J]. Chinese Journal of Rock Mechanics and Engineering, 2007, 26(2):217-225.
|
[3] |
Nabighian M N. Electromagnetic methods in applied geophysics[M]. Tulsa: Society of Exploration Geophysicists,1988.
|
[4] |
Sun H F, Zhang N Y, Li D R, et al. The first semi-airborne transient electromagnetic survey for tunnel investigation in very complex terrain areas[J]. Tunnelling and Underground Space Technology, 2023,132:104893.
|
[5] |
Zhu W Q, Mousavi S M, Beroza G C. Seismic signal denoising and decomposition using deep neural networks[J]. IEEE Transactions on Geoscience and Remote Sensing, 2019, 57(11):9476-9488.
|
[6] |
董新桐, 钟铁, 王洪洲, 等. 基于卷积对抗降噪网络的塔里木盆地沙漠地震资料消噪方法研究[J]. 地球物理学报, 2022, 65(7):2661-2672.
|
[6] |
Dong X T, Zhong T, Wang H Z, et al. The denoising of desert seismic data acquired from Tarim Basin based on convolutional adversarial denoising network[J]. Chinese Journal of Geophysics, 2022, 65(7):2661-2672.
|
[7] |
Chawla N V, Bowyer K W, Hall L O, et al. SMOTE:Synthetic minority over-sampling technique[J]. Journal of Artificial Intelligence Research, 2002,16:321-357.
|
[8] |
Shorten C, Khoshgoftaar T M. A survey on image data augmentation for deep learning[J]. Journal of Big Data, 2019, 6(1):60.
|
[9] |
Lee S G, Hwang U, Min S, et al. Polyphonic music generation with sequence generative adversarial networks[EB/OL]. 2017:arXiv:1710.11418. http://arxiv.org/abs/1710.11418
|
[10] |
王艳红. 基于生成对抗神经网络的心电数据增强算法研究[D]. 北京: 北京邮电大学, 2020.
|
[10] |
Wang Y H. Research on ECG data enhancement algorithm based on generative adversarial neural network[D]. Beijing: Beijing University of Posts and Telecommunications, 2020.
|
[11] |
丁斌, 夏雪, 梁雪峰. 基于深度生成对抗网络的海杂波数据增强方法[J]. 电子与信息学报, 2021, 43(7):1985-1991.
|
[11] |
Ding B, Xia X, Liang X F. Sea clutter data augmentation method based on deep generative adversarial network[J]. Journal of Electronics & Information Technology, 2021, 43(7):1985-1991.
|
[12] |
Goodfellow I J, Pouget-Abadie J, Mirza M, et al. Generative adversarial nets[C]// Proceedings of the 27th International Conference on Neural Information Processing Systems, 2014.
|
[13] |
赵树阳, 李建武. 基于生成对抗网络的低秩图像生成方法[J]. 自动化学报, 2018, 44(5):829-839.
|
[13] |
Zhao S Y, Li J W. Generative adversarial network for generating low-rank images[J]. Acta Automatica Sinica, 2018, 44(5):829-839.
|
[14] |
孙钰, 李林燕, 叶子寒, 等. 多层次结构生成对抗网络的文本生成图像方法[J]. 计算机应用, 2019, 39(11):3204-3209.
|
[14] |
Sun Y, Li L Y, Ye Z H, et al. Text-to-image synthesis method based on multi-level structure generative adversarial networks[J]. Journal of Computer Applications, 2019, 39(11):3204-3209.
|
[15] |
孙晓, 丁小龙. 基于生成对抗网络的人脸表情数据增强方法[J]. 计算机工程与应用, 2020, 56(4):115-121.
|
[15] |
Sun X, Ding X L. Data augmentation method based on generative adversarial networks for facial expression recognition sets[J]. Computer Engineering and Applications, 2020, 56(4):115-121.
|
[16] |
Arjovsky M, Chintala S, Bottou L. Wasserstein Generative Adversarial Networks[C]// 31st Annual Conference on Neural Information Processing Systems (NIPS), 2017.
|
[17] |
Gulrajani I, Ahmed F, Arjovsky M, et al. Improved training of Wasserstein GANs[J]. Neural Information Processing Syatems,2017:1-20.
|
[18] |
杨丽, 吴雨茜, 王俊丽, 等. 循环神经网络研究综述[J]. 计算机应用, 2018, 38(S2):1-6,26.
|
[18] |
Yang L, Wu Y Q, Wang J L, et al. A survey of research on circulatory neural network[J]. Journal of Computer Applications, 2018, 38(S2):1-6,26.
|
[19] |
Yang L, Wu Y X, Wang J L, et al. Research on recurrent neural network[J]. Journal of Computer Applications, 2018, 38(S2):1-6,26.
|
[20] |
陈成栋. 半航空瞬变电磁数据采集设计和数据校正研究[D]. 济南: 山东大学, 2021.
|
[20] |
Chen C D. Study of data acquisition design and data correction research for semi-airborne transient electromagnetics[D]. Jinan: Shandong University, 2021.
|
[1] |
ZHANG Wei, ZHOU Yu-Kun, LIU Li-Yan, CHEN Jun-Liang. Application of the cross-borehole resistivity method in the monitoring of leakage for urban water supply pipelines[J]. Geophysical and Geochemical Exploration, 2024, 48(3): 884-890. |
[2] |
YANG Min, XU Xin-Qiang, CHEN Ming, Ji Xiao-Lin, WANG Wan-Yin, ZHAO Dong-Ming, ZHOU Wei, ZHANG Yi-Mi. Research on the detection of underground pedestrian passage by high precision gravity exploration[J]. Geophysical and Geochemical Exploration, 2024, 48(3): 876-883. |
|
|
|
|