|
|
Prospecting potential of medium-fine-grained rock-type lithium resources in the Xianghualing orefield, Hunan Province, China |
SONG Zhi-Fang1( ), YANG Qi-Zhi1,2, ZHU Zhen-Zhen1, CAO Neng-Wen1 |
1. Mineral Resources Investigation Institute of Hunan Province, Changsha 410129, China 2. State Key Laboratory of Lithospheric Evolution,Institute of Geology and Geophysics,Chinese Academy of Sciences,Beijing 100029,China |
|
|
Abstract This study aims to explore the distribution characteristics and occurrence patterns of lithium in medium-fine-grained rocks and its paragenetic or associated relationship with minerals such as tungsten, tin, niobium, tantalum, beryllium, and rubidium. Hence, it analyzed the distribution characteristics and diagenetic and metallogenic processes of nonferrous-rare metals in the Xianghualing orefield. With the exposed granitic rock masses as the center, this study divided three ore-forming sections of rare metal lithium, i.e., the Laiziling-Nanjichong, Jianfengling-Xianghuapu, and Tongtianmiao-Yaoshanli ore-forming sections. Moreover, lithium-rich mineralized bodies were discovered in the medium-fine-grained rocks of the former two ore-forming sections. Lithium converges and accumulates in the interior and top of medium-fine-grained granitic rock masses, at the automorphism and alteration positions of high-emplacement apophyses and vein fronts and edges, or in the areas enclosed by silicon-rich quartz veins at the contact zone with silicon-rich surrounding rocks. Dividing these mineralization and alteration sections serves as a crucial approach for exploring medium-fine-grained rock type lithium ore bodies in the Xianghualing orefield.
|
Received: 31 January 2023
Published: 16 April 2024
|
|
|
|
|
6]) 1—Himalayan structural layer;2—Yanshanian structural layer;3—Variscan-Indochian structural layer;4—Caledonian structural layer; 5—granite;6—quartz porphyry;7—Nb-Ta deposit;8—beryllium deposit;9—lithium deposit;10—tungsten deposit;11—tin deposit;12—lead-zinc deposit;13—alluvial tin deposit;14—measured fault;15—presumed fault;16—place names;17—range of lithium metallogenic area ">
|
Schematic diagram of geology and mineral distribution of Xianghualing orefield(based on the data of Hunan Metallurgical 238 Exploration Team [6]) 1—Himalayan structural layer;2—Yanshanian structural layer;3—Variscan-Indochian structural layer;4—Caledonian structural layer; 5—granite;6—quartz porphyry;7—Nb-Ta deposit;8—beryllium deposit;9—lithium deposit;10—tungsten deposit;11—tin deposit;12—lead-zinc deposit;13—alluvial tin deposit;14—measured fault;15—presumed fault;16—place names;17—range of lithium metallogenic area
|
成矿区段岩体 | 样品数 | 浓集系数kc | 低 | 中 | 高 | 特高 | | | 1~2 | >2~5 | >5~10 | >10~100 | >100~1000 | >1000 | 癞子岭 | 43 | Nb、B、Mo、Ga、Co | Cr | Zn、Ag、Be | Li、As、Sn、Sb、W、Pb、Cu | | Bi | 通天庙 | 43 | B、Cu、Co、Be | Nb、Zn、Cr、Ga | Pb、Ag | Sb、As、Sn、W、Li | Bi | | 尖峰岭 | 43 | Nb、Zn | Mo、Cr | Be | Li、Ag、W、Sn | As | Bi |
|
Geochemical anomaly characteristics in Xianghualing orefield
|
|
Distribution diagram of element geo-chemical enrichment field in Xianghualing orefield 1—Be、Nb、Li、F enrichment field;2—W、Sn、(Li)、Bi、Mo enrichment field;3—Pb、Zn、Ag enrichment field;4—Sb、As、Au enrichment field
|
|
Distribution diagram of lithium ore resources in Xianghualing orefield 1—Quaternary;2—Cretaceous;3—upper Permian Dalong Formation;4—upper Permian Longtan Formation;5—lower Permian Dangchong Formation;6—lower Permian Qixia Formation;7—Hutian group of middle-upper Carboniferous system;8—lower Carboniferous Zimenqiao Formation;9—lower Carboniferous Ceshui Formation;10—lower Carboniferous Shidengzi Formation;11—lower Carboniferous Menggong'ao Formation;12—upper Devonian Xikuangshan Formation;13—upper Devonian Shetianqiao Formation;14—middle Devonian Qiziqiao Formation;15—middle Devonian Tiaomajian Formation;16—Cambrian;17—middle/late Yanshanian granite;18—granite porphyry;19—measured/presumed fault;20—fault and its number;21—measured/presumed stratigraphic boundary;22—unconformity boundary;23—stratum occurrence;24—skarnization;25—quartz vein;26—range of lithium metallogenic area
|
|
Microscopic picture of rocks and minerals a—×28, fibrous lithium-containing muscovite (Li3) is accounted for by quartz(Q) crystallized later; b—×80, lepidolite (Li4) accounts for quartz(Q), TOP is topaz, and Se is sericite; c—×80, albite (Ab2) metasomatic lithium-containing muscovite (Li3), and fine spar (Mio) wrapped in lithium-containing muscovite (Li3); d—×80, microclinic-microcrystal feldspar (K2) metasomatism lithium-containing muscovite (Li3); e—×28, greisen-mineralized potassium-sodium granite; f—×25, yellow-green fine spar; g—×28, black fine spar; h—×40, tan fine spar
|
成矿区段 | 主要岩体特征 | 主要矿物成分 | 副矿物成分 | 蚀变矿物成分 | 癞子岭—南吉冲 | 癞子岭燕山早期陆壳重熔型酸性侵入花岗岩体,分3阶段侵入 | 条纹长石、更长石、石英、锂云母、黑云母、白云母 | 锆石、磷灰石、磁铁矿、磁钛铁矿、锂霞石、锡石、金绿宝石、独居石 | 黄玉、钠长岩、萤石、绢云母、细晶石、硫化物、铌钽铁矿、绿泥石、褐帘石 | 通天庙—瑶山里 | 燕山早期第二阶段中细粒黑云母花岗岩侵入体 | 钾长石、钠更长石、石英、黑云母(铁锂云母) | 锆石、独居石、水晶、铌钽铁矿、金绿宝石 | 黄玉、钠长岩、萤石、绢云母、毒砂 | 尖峰岭—香花铺 | 尖峰岭燕山早期第二阶段细—中细粒黑云母花岗岩侵入体 | 条纹长石、更长石、石英、锂云母、黑云母、白云母 | 锆石、钽铌铁矿、锂霞石、锡石、金绿宝石、黑钨矿、独居石 | 黄玉、钠长岩、萤石、绿泥石、绢云母、细晶石、硫化物 |
|
Characteristics of lithium mine formation section in Xianghualing orefield
|
|
Sampling photos of fine-grained granite in the drilling cores
|
成矿区段 | 样品号 | 岩性地质体 | w(Li2O)/% | 区间值 | 平均值 | 癞子岭—南吉冲 | 645-(1-6) | 云英岩化花岗岩 | 0.204~0.574 | 0.445 | 540-(1-4) | 中细粒花岗岩 | 0.083~0.185 | 0.111 | H-(1-10) | 细晶岩 | 0.242~1.540 | 1.158 | 通天庙—瑶山里 | 通天-H3-1 | 云英岩 | 0.288 | 0.288 | H-(1-5) | 中细粒花岗岩 | 0.179~0.341 | 0.221 | H-(8-9) | 黑云母花岗岩 | 0.163~0.222 | 0.193 | 尖峰岭—香花铺 | H-(1-6)、480-110-(1-3) | 中细粒花岗岩 | 0.155~0.710 | 0.374 | 480-110-(7-8) | 构造角砾岩 | 0.430~0.540 | 0.485 | H-2 | 符山石矽卡岩 | 0.299 | 0.299 | H-(6-12) | 黑云母二长花岗岩 | 0.147~0.382 | 0.237 | 尖峰岭—香花铺1974年 分析成果资料[8]整理 | 地表(重15) | 黑色细晶岩 | 1.59 | 1.59 | 地表(重1-10) | 黄棕色细晶岩 | 1.50 | 1.50 | 井5-149(重19) | 黄绿色细晶岩 | 2.68 | 2.68 |
|
Analysis results of fine crystalline rock lithium mine samples in Xianghualing orefield
|
|
Field specimen photos of fine granite and cloutzite ore in the surface
|
样品类型 | 样品号 | Si | Al | K | Ca | Na | W | Sn | Nb | Ta | Li | Zr | 黑云母花岗岩 | H-(04、02) | 32.72 | 9.14 | 2.98 | 0.094 | 5653 | 21.21 | 42.75 | 71.10 | 30.90 | 1010.0 | 73.85 | 粗粒花岗岩 | H-(15、20) | 27.11 | 16.20 | 1.85 | 0.112 | 330 | 22.45 | 141.30 | 193.00 | 158.10 | 893.0 | 46.51 | 云英岩 | H-(06、16) | 26.87 | 8.59 | 4.56 | 3.021 | 1243 | 102.00 | 139.00 | 40.45 | 12.25 | 5500.0 | 11.16 | 断层带原矿 | H-(09、21) | 15.64 | 13.50 | 1.88 | 5.110 | 1592 | 357.90 | 454.10 | 11.41 | 3.42 | 1015.0 | 117.60 | 矽卡岩 | H-(12、18) | 4.92 | 3.20 | 0.57 | 27.430 | 512 | 97.85 | 206.00 | 8.14 | 3.12 | 760.0 | 8.03 | 白钨矿[12] | XHP-19 | 9.22 | 0.83 | 0.41 | 32.870 | 364 | 780.00 | 15.30 | 0.39 | 0.07 | 39.1 | 0.45 | 硅化砂岩[12] | XHP-10 | 24.54 | 7.49 | 5.08 | 5.155 | 1128 | 427.00 | 102.00 | 47.60 | 12.60 | 4340.0 | 25.90 | 钨锡矿[12] | XHP-08 | 30.03 | 9.27 | 3.14 | 0.584 | 393 | 132.00 | 168.00 | 119.00 | 48.40 | 4235.0 | 51.70 | 萤石矿[12] | XHP-11 | 2.06 | 1.77 | 0.28 | 30.280 | 705 | 14.70 | 72.10 | 1.60 | 0.31 | 240.0 | 1.29 |
|
Analysis results of major quantities and rare elements of various samples in Xianghualing
|
|
Distribution diagram of the relationship between Li content and Si, Ca content in different lithology and ores in Xianghualing orefield 1—biotite granite; 2—coarse grained granite; 3—quartzite; 4—silicified sandstone; 5—skarn; 6—scheelite;7—raw ore in fault zone; 8—tungsten-tin ore; 9—fluorite mine
|
[1] |
轩一撤, 袁顺达, 原垭斌, 等. 湘南尖峰岭岩体锆石U-Pb年龄、地球化学特征及成因[J]. 矿床地质, 2014, 33(6):1379-1390.
|
[1] |
Xuan Y C, Yuan S D, Yuan Y B, et al. Zircon U-Pb age,geochemistry and petrogenesis of Jianfengling pluton in southern Hunan Province[J]. Mineral Deposits, 2014, 33(6):1379-1390.
|
[2] |
朱金初, 王汝成, 陆建军, 等. 湘南癞子岭花岗岩体分异演化和成岩成矿[J]. 高校地质学报, 2011, 17(3):381-392.
|
[2] |
Zhu J C, Wang R C, Lu J J, et al. Fractionation,evolution,petrogenesis and mineralization of Laiziling granite pluton,southern Hunan Province[J]. Geoiogical Journal of China Universities, 2011, 17(3):381-392.
|
[3] |
沈渭洲, 王德滋, 谢永林, 等. 湖南千里山复式花岗岩体的地球化学特征和物质来源[J]. 岩石矿物学杂志, 1995, 14(3):193-202.
|
[3] |
Shen W Z, Wang D Z, Xie Y L, et al. Geochemical characteristics and material source of Qianlishan complex granite in Hunan[J]. Journal of Petromineralogy, 1995, 14(3):193-202.
|
[4] |
柏道远, 陈建超, 马铁球, 等. 湘东南骑田岭岩体A型花岗岩的地球化学特征及其构造环境[J]. 岩石矿物学杂志, 2005, 24(4):255-272.
|
[4] |
Bai D Y, Chen J C, Ma T Q, et al. Geochemical characteristics and tectonic environment of A-type granite in South Qitianling rock mass,Southeast Hunan[J]. Journal of Petromineralogy, 2005, 24(4):255-272.
|
[5] |
覃莉茜, 饶灿, 林晓青, 等. 湖南香花岭地区花岗岩中锂对成岩成矿的制约[J]. 高校地质学报, 2021, 27(2):149-162.
|
[5] |
Qin L Q, Rao C, Lin X Q, et al. Constraints of lithium on the petrogenesis and mineralization of granite in Xianghualing area, Hunan Province[J]. Geological Journal of China Universities, 2021, 27(2):149-162.
|
[6] |
吴永驹, 王正东, 熊永久, 等. 湖南香花岭有色稀有多金属矿床地质[R]. 湖南冶金238勘探队,1976.
|
[6] |
Wu Y J, Wang Z D, Xiong Y J, et al. Geology of Hunan Xianghualing nonferrous rare polymetallic deposit[R]. Hunan Metallurgy 238 Exploration Team,1976.
|
[7] |
何开善, 彭继述, 徐永奎, 等. 1/5万区域地质调查报告(矿产、物化探部分)[R]. 湖南省地质矿产局区域地质调查所三队,1990.
|
[7] |
He K S, Peng J S, Xu Y K, et al. 1/50000 regional geological survey report (mineral, geophysical and geochemical exploration part)[R]. Hunan Province Geology and Mineral Resources Bureau Regional Geological Survey Office No. 3 Team,1990.
|
[8] |
陈鼎凯, 吴永驹, 王正东, 等. 湖南临武香花铺矿区尖峰岭钽铌矿床地质勘探总结报告书[R]. 湖南冶金238勘探队,1974.
|
[8] |
Chen D K, Wu Y J, Wang Z D, et al. Summary report on geological exploration of Jianfengling Ta-Nb deposit in Xianghuapu mining area, Linwu, Hunan[R]. Hunan Metallurgy 238 Exploration Team,1974.
|
[9] |
徐玉琳. 香花岭穹窿区花岗岩的岩石特征和蚀变矿化分带[J]. 矿产与地质, 1988, 2(S):89-97.
|
[9] |
Xu Y L. Rock characteristics and alteration and mineralization zoning of granite in Xianghualing dome area[J]. Minerals and Geology, 1988, 2(S): 89-97.
|
[10] |
文春华, 邵拥军, 黄革非, 等. 湖南尖峰岭稀有金属花岗岩地球化学特征及成矿作用[J]. 矿床地质, 2017, 36(4):879-892.
|
[10] |
Wen C H, Shao Y J, Huang G F, et al. Geochemical features and mineralization of Jianfengling rare metals Granite in Hunan Province[J]. Mineral Deposits, 2017, 36(4):879-892.
|
[11] |
袁忠信, 白鸽, 杨岳清. 稀有金属花岗岩型矿床成因讨论[J]. 矿床地质, 1987(1):88-94.
|
[11] |
Yuan Z X, Bai G, Yang Y Q. Discussion on the genesis of rare metal granite deposit[J]. Deposit Geology, 1987(1):88-94.
|
[12] |
王婵, 刘皓, 缪秉魁, 等. 湖南香花岭矿区稀有金属分布特征和成矿模式[J]. 桂林理工大学学报, 2016, 36(1):66-75.
|
[12] |
Wang C, Liu H, Miao B K, et al. Distribution characteristics and mineralization models of rare metals in Xianghualing ore district of Hunan[J]. Journal of Guilin University of Technology, 2016, 36(1):66-75.
|
[13] |
朱真真, 黄文海, 王元, 等. 湖南杉木溪矿区雄黄矿体地质特征及找矿前景[J]. 国土资源导刊, 2018, 15(2):31-36,42.
|
[13] |
Zhu Z Z, Huang W H, Wang Y, et al. Geological characteristics and prospecting prospect of realgar orebody in Shanmuxi mining area, Hunan[J]. Land and Resources Guide, 2018, 15 (2): 31-36,42.
|
[14] |
钟江临, 李祥辉, 朱真真, 等. 湖南省临武县杉木溪矿区铷多金属矿普查报告[R]. 湖南省有色地质勘查局一总队, 2017.
|
[14] |
Zhong J L, Li X H, Zhu Z Z, et al. Survey report of rubidium polymetallic deposit in Shanmuxi mining area, Linwu County, Hunan Province[R]. The First Corps of Hunan Nonferrous Geological Exploration Bureau, 2017.
|
[1] |
GAN Xue-Jun, ZHOU Si-Chun, LIU Xiao-Hui, WANG Deng-Hong, WEN Chun-Hua. The application of an integrated geogas prospecting for exploring rare metal deposits in the periphery of the Renli mining area, southern Hunan Province[J]. Geophysical and Geochemical Exploration, 2023, 47(6): 1649-1656. |
[2] |
HAN Ruo-Pu, ZHOU Si-Chun, WANG Deng-Hong, LIU Xiao-Hui, CHEN Shou-Bo, WU Jian-Xin. Comprehensive geogas anomalies in the Hongling area of Hami, Xinjiang: Characteristics and implications for prospecting[J]. Geophysical and Geochemical Exploration, 2023, 47(6): 1657-1664. |
|
|
|
|