|
|
Log-based in situ stress prediction of deep coalbed methane reservoirs in the Daji block |
XIE Zheng-Long1( ), LIU Zhi-Di1,2( ), HAN Hong-Lai1, WANG Duo1, WANG Cheng-Wang3, WANG Wei4, JI Liang4 |
1. School of Earth Sciences and Engineering, Xi 'an Shiyou University, Xi 'an 710065, China 2. Shaanxi Key Laboratory of Petroleum Accumulation Geology, Xi 'an Shiyou University, Xi 'an 710065, China 3. Engineering Technology Research Institute of PetroChina Coalbed Methane Co., Ltd., Xi 'an 710082, China 4. Hancheng Gas Production Management Area, PetroChina Coalbed Methane Co., Ltd., Hancheng 715400, China |
|
|
Abstract For deep coalbed methane (CBM) exploration and production, accurate in situ stress prediction holds critical significance for safe and efficient drilling and completion of wells. Deep CBM reservoirs, once considered restricted areas for exploration and exploitation, have been highly anticipated owing to their high yields in recent years. However, their in situ stress prediction model has not been investigated effectively. Hence, this study systematically analyzed six in situ stress prediction models commonly used for conventional oil and gas reservoirs and unconventional gas (like CBM) reservoirs. Based on these prediction models, this study calculated the in situ stress, and found that the combined spring model and the Newberry model yielded relatively high accuracy through comparative analysis of closure pressures. To improve the accuracy of in-situ stress prediction models, the effective stress coefficient of coal rocks was employed to optimize the two models. The optimized in-situ stress models yielded prediction accuracy errors reduced by 4%, roughly meeting the requirements of in-situ stress prediction accuracy for deep CBM exploration and production in the Daji block.
|
Received: 09 December 2022
Published: 16 April 2024
|
|
Corresponding Authors:
LIU Zhi-Di
E-mail: 2242706768@qq.com;546759942@qq.com
|
|
|
|
|
Comparison of predicted ground stress and measured closure pressure in the deep (seam) coal reservoir of D7-5 well 2 233~2 238 m
|
|
Comparison of predicted ground stress and measured closure pressure in the deep (seam) coal reservoir of D40 well 1 865~1 873 m
|
|
Fracturing curve of D7-5 well
|
|
Fracturing curve of D40 well
|
井号 | 层位 | 深度/m | 实测闭 合压力/MPa | 预测闭合压力/MPa | Anderson 模型 | Eaton 模型 | Newberry 模型 | 黄氏模型 | 分层模型 | 组合弹 簧模型 | D7-5 | 深8#煤 | 2234.5 | 32.89 | 17.60 | 27.70 | 30.31 | 23.12 | 25.37 | 35.68 | D40 | 深8#煤 | 1868.0 | 36.92 | 28.53 | 26.30 | 32.51 | 43.19 | 27.90 | 38.16 |
|
Comparison of predicted and measured values of minimum horizontal principal stresses
|
|
Horizontal geostress prediction model error analysis
|
|
Plate of dynamic-static conversion of Young's modulus of coal rock
|
|
Comparison of predicted ground stress and measured closure pressure in the deep (seam) coal reservoir at 2 164.5~2 172.5 m in well H3
|
[1] |
秦勇, 申建. 论深部煤层气基本地质问题[J]. 石油学报, 2016, 37(1):125-136.
|
[1] |
Qin Y, Shen J. On the fundamental issues of deep coalbed methane geology[J]. Acta Petrolei Sinica, 2016, 37(1):125-136.
|
[2] |
赵景辉, 高玉巧, 陈贞龙, 等. 鄂尔多斯盆地延川南区块深部地应力状态及其对煤层气开发效果的影响[J]. 中国地质, 2021, 48(3):785-793.
|
[2] |
Zhao J H, Gao Y Q, Chen Z L, et al. Stress state of deep seam and its influence on development performance of CBM wells in South Yanchuan Block,Odors Basin[J]. Geology in China, 2021, 48(3):785-793.
|
[3] |
鞠玮, 姜波, 秦勇, 等. 多煤层条件下现今地应力特征与煤层气开发[J]. 煤炭学报, 2020, 45(10):3492-3500.
|
[3] |
Ju W, Jiang B, Qin Y, et al. Characteristics of present-day in situ stress field under multi-seam condtions:Implications for coalbed mthane development[J]. Journal of China Coal Society, 2020, 45(10):3492-3500.
|
[4] |
侯振学. 电成像测井在煤层气储层精细评价中的应用[J]. 测井技术, 2018, 42(6):672-677.
|
[4] |
Hou Z X. Application of electrical imaging logging in fine evaluation of CBM reservoir[J]. Well Logging Technology, 2018, 42(6):672-677.
|
[5] |
黄昌杰, 丁文龙, 尹帅. 常规测井参数对煤层气储层地应力敏感性分析[J]. 钻采工艺, 2018, 41(2):5-8.
|
[5] |
Huang C J, Ding W L, Yin S. How sensitive the conventional logging parameters to In-situ stress of coal methane reservoirs[J]. Drilling & Production Technology, 2018, 41(2):5-8.
|
[6] |
曹峰, 何建华, 王园园, 等. 合川地区须二段低各向异性储层现今地应力方向评价方法[J]. 地球科学进展, 2022, 37(7):742-755.
|
[6] |
Cao F, He J H, Wang Y Y, et al. Methods to evaluate present-day In-situ stress direction for low anisotropic reservoirs in the second member of the Xujiahe formation in Hechuan area[J]. Advances in Earth Science, 2022, 37(7):742-755.
|
[7] |
Bala A, Radulian M, Toma-Danila D. Crustal stress partitioning in the complex seismic active areas of Romania[J]. Acta Geodaetica et Geophysica, 2020, 55(3):389-403.
|
[8] |
金留青, 李雁, 韩颜峰, 等. 特殊测井技术在贵州煤层气评价中的应用[J]. 中国煤层气, 2017, 14(6):10-15,9.
|
[8] |
Jin L Q, Li Y, Han Y F, et al. Application of special logging technology in CBM evaluation in Guizhou[J]. China Coalbed Methane, 2017, 14(6):10-15,9.
|
[9] |
李叶朋, 申建, 杨春莉, 等. 沁水盆地郑庄区块地应力发育特征及其地质意义[J]. 煤炭科学技术, 2017, 45(10):176-181,110.
|
[9] |
Li Y P, Shen J, Yang C L, et al. Characteristics and its geological implication of ground stress in Zhengzhuang Block of Qinshui Basin[J]. Coal Science and Technology, 2017, 45(10):176-181,110.
|
[10] |
王玮卿. 基于BP神经网络的页岩气水平井地应力计算研究[D]. 大庆: 东北石油大学, 2021.
|
[10] |
Wang W Q. Study on the calculation of shale gas level in the bp neural network[D]. Daqing: Northeast Petroleum University, 2021.
|
[11] |
郑贵强, 杨德方, 李小明, 等. 沁水盆地柿庄北区块深部煤储层特征测井评价研究[J]. 煤炭科学技术, 2019, 47(6):178-186.
|
[11] |
Zheng G Q, Yang D F, Li X M, et al. Study on features and logging evaluation of deep coal reservoir in North Shizhuang Block of Qinshui Basin[J]. Coal Science and Technology, 2019, 47(6):178-186.
|
[12] |
刘丽民, 魏庆喜, 徐仁桂. 煤层气常规测井技术与应用[J]. 中国煤层气, 2008, 5(1):28-31,22.
|
[12] |
Liu L M, Wei Q X, Xu R G. Conventional CBM logging technologies and their applications[J]. China Coalbed Methane, 2008, 5(1):28-31,22.
|
[13] |
陈峥嵘, 刘书杰, 张滨海, 等. 沁水盆地北缘煤层气井地应力模型研究[J]. 煤炭科学技术, 2018, 46(10):136-142.
|
[13] |
Chen Z R, Liu S J, Zhang B H, et al. Study on geostress model of coalbed methane wells in north edge of Qinshui Basin[J]. Coal Science and Technology, 2018, 46(10):136-142.
|
[14] |
姜波, 汪吉林, 屈争辉, 等. 大宁—吉县地区地应力特征及其对煤储层渗透性的影响[J]. 地学前缘, 2016, 23(3):17-23.
|
[14] |
Jiang B, Wang J L, Qu Z H, et al. The stress characteristics of the Daning-Jixian Area and its influence on the permeability of the coal reservoir[J]. Earth Science Frontiers, 2016, 23(3):17-23.
|
[15] |
唐军, 郑佳奎, 徐传艳, 等. 地应力测井评价在超前注水油田开发中的应用——以三塘湖盆地牛圈湖油田西山窑组油藏为例[J]. 石油天然气学报, 2010, 32(4):82-86,425.
|
[15] |
Tang J, Zheng J K, Xu C Y, et al. Evaluation of ground stress with logging data and its application in oilfield development by advanced water injection[J]. Journal of Oil and Gas Technology, 2010, 32(4):82-86,425.
|
[16] |
Eaton B A. Fracture gradient prediction and its application in oilfield operations[J]. Journal of Petroleum Technology, 1969, 21(10):1353-1360.
|
[17] |
戴朝霞. 长治区块煤储层地应力预测及应力计抗磨性改进研究[D]. 太原: 太原理工大学, 2021.
|
[17] |
Dai Z X. Study on in-situ stress prediction of coal reservoir in Changzhi Block and improvement of wear resistance of stress meter[D]. Taiyuan: Taiyuan University of Technology, 2021.
|
[18] |
Anderson R A, Ingram D S, Zanier A M. Determining fracture pressure gradients from well logs[J]. Journal of Petroleum Technology, 1973, 25(11):1259-1268.
|
[19] |
Newberry B M, Nelson R F, Ahmed U. Prediction of vertical hydraulic fracture migration using compressional and shear wave slowness[C]// Permeability Gas Reservoirs Symposium,1985.
|
[20] |
杜国峰, 郭大立, 薛玲, 等. 煤层地应力及破裂压力解释技术[J]. 大庆石油地质与开发, 2014, 33(6):171-174.
|
[20] |
Du G F, Guo D L, Xue L, et al. Interpreting techniques of the terrestrial stress and fracture pressure for coal beds[J]. Petroleum Geology & Oilfield Development in Daqing, 2014, 33(6):171-174.
|
[21] |
李新林. 川南深层页岩气储层地应力测井评价方法研究[D]. 荆州: 长江大学, 2022.
|
[21] |
Li X L. Study on in-situ stress logging evaluation method of deep shale gas reservoirs in southern Sichuan[D]. Jingzhou: Yangtze University, 2022.
|
[22] |
闫萍. 利用测井资料计算地应力及其在山前构造带的应用研究[D]. 东营: 中国石油大学(华东), 2007.
|
[22] |
Yan P. Calculation of geostress by logging data and its application in piedmont structural zone[D]. Dongying: China University of Petroleum (Huadong), 2007.
|
[23] |
刘志强. 煤层地应力预测方法研究[D]. 北京: 中国地质大学(北京), 2014.
|
[23] |
Liu Z Q. Research on the method of stress prediction method of coal seam[D]. Beijing: China University of Geosciences (Beijing), 2014.
|
[24] |
黄荣樽, 庄锦江. 一种新的地层破裂压力预测方法[J]. 石油钻采工艺, 1986, 8(3):1-14.
|
[24] |
Huang R Z, Zhuang J J. A new prediction method of formation fracture pressure[J]. Oil Drilling & Production Technology, 1986, 8(3):1-14.
|
[25] |
巩泽文. 煤层气井地应力测井评价及工程应用研究[D]. 北京: 煤炭科学研究总院, 2021.
|
[25] |
Gong Z W. Research on the evaluation and engineering application research research[D]. Beijing: The General Institute of Coal Science Research, 2021.
|
[26] |
葛洪魁, 林英松, 王顺昌. 地应力测试及其在勘探开发中的应用[J]. 石油大学学报:自然科学版, 1998, 22(1):97-102.
|
[26] |
Ge H K, Lin Y S, Wang S C. Geographical stress testing and its application in exploration and development[J]. Journal of Petroleum University:Natural Science Edition, 1998, 22(1):97-102.
|
[27] |
田圆圆. 海上油田疏松砂岩储层地应力研究[D]. 东营: 中国石油大学(华东), 2013.
|
[27] |
Tian Y Y. The study on In-situ stress of loose sandstone reservoir in offshore oilfields[D]. Dongying: China University of Petroleum (Huadong), 2013.
|
[28] |
贾路行. 石壕煤矿断层构造带应力场分布特征研究[D]. 重庆: 重庆大学, 2018.
|
[28] |
Jia L X. Study on distribution characteristics of stress field in fault structure zone of Shihao coal mine[D]. Chongqing: Chongqing University, 2018.
|
[29] |
么勃卫. 华庆地区低孔低渗储层地应力计算及分布规律研究[D]. 成都: 西南石油大学, 2019.
|
[29] |
Yao B W. Huaqing area low-hole and low osmotic reservoir layers of geographical stress calculation and distribution laws[D]. Chengdu: Southwest Petroleum University, 2019.
|
[30] |
Wang Z J. Seismic anisotropy in sedimentary rocks,part 1:A single-plug laboratory method[J]. Geophysics, 2002, 67(5):1415.
|
[31] |
张兆谦. 利用各向异性模型计算水平地应力[J]. 测井技术, 2019, 43(6):601-605.
|
[31] |
Zhang Z Q. Calculation of horizontal stress by an anisotropic model[J]. Well Logging Technology, 2019, 43(6):601-605.
|
[32] |
Biot M A. General theory of three-dimensional consolidation[J]. Journal of Applied Physics, 1941, 12(2):155-164.
|
[33] |
Geertsma J. The effect of fluid pressure decline on volumetric changes of porous rocks[J]. Transactions of the AIME, 1957, 210(1):331-340.
|
[34] |
余雄鹰, 王越之, 李自俊. 声波法计算水平主地应力值[J]. 石油学报, 1996, 17(3):59-63.
|
[34] |
Yu X Y, Wang Y Z, Li Z J. The level of sound wave method is mainly based on the value[J]. Petroleum Journal, 1996, 17(3):59-63.
|
[35] |
马建海, 孙建孟. 用测井资料计算地层应力[J]. 测井技术, 2002, 26(4):347-352.
|
[35] |
Ma J H, Sun J M. Calculation of formation stress using logging data[J]. Well Logging Technology, 2002, 26(4):347-352.
|
[36] |
王修朝. 地应力预测方法在川南地区大寨页岩气田的应用[J]. 特种油气藏, 2018, 25(5):35-38.
|
[36] |
Wang X C. Application of geo-stress prediction in the dazhai shale gasfield of southern Sichuan[J]. Special Oil & Gas Reservoirs, 2018, 25(5):35-38.
|
[37] |
谢润成. 川西坳陷须家河组探井地应力解释与井壁稳定性评价[D]. 成都: 成都理工大学, 2009.
|
[37] |
Xie R C. In-situ stress interpretation and borehole stability evaluation of Xujiahe formation exploration wells in western Sichuan depression[D]. Chengdu: Chengdu University of Technology, 2009.
|
[38] |
Wu F, Zhang H, Zou Q L, et al. In-situ stress distribution laws of coal and rock in deep mining based on the Griffith criterion[J]. Geomechanics and Geophysics for Geo-Energy and Geo-Resources, 2022, 8(2):78.
|
[39] |
Higgins S, Goodwin S, Donald A, et al. Anisotropic stress models improve completion design in the Baxter shale[C]// SPE Annual Technical Conference and Exhibition, 2008.
|
[1] |
ZHOU Dao-Qing, XIONG Sheng-Qing, WANG Bao-Di, CAO Bao-Bao, GUO Zhi-Hong, HU Yue, ZHENG Yu-Zhou, ZHAO Rui, WEI Yan-Yan, XIAO Meng-Chu, HU Xia-Wei, YAN Qiao-Juan. A review of thirty years of airborne geophysical surveys in the Qiangtang Basin and future prospect[J]. Geophysical and Geochemical Exploration, 2024, 48(2): 287-295. |
[2] |
HE Xi-Peng, LIU Ming, XUE Ye, LI Yan-Jing, HE Gui-Song, MENG Qing-Li, ZHANG Yong, LIU Hao-Juan, LAN Jia-Da, YANG Fan. Practices and future research directions of geophysical exploration for normal-pressure shale gas in complex structural areas,southeastern Chongqing[J]. Geophysical and Geochemical Exploration, 2024, 48(2): 314-326. |
|
|
|
|