|
|
Seismic data acquisition of normally pressured shale gas reservoirs in residual synclines in the Pengshui area,Sichuan Basin,China |
XUE Ye, YANG Fan, ZHAO Su-Cheng, LAN Jia-Da |
Research Institute of Exploration & Development,East Company,SINOPEC,Nanjing 210007,China |
|
|
Abstract Normally pressured shale gas reservoirs in southern China,exhibiting significant potential resources,are primarily distributed in Silurian residual synclines at the periphery of the Sichuan Basin.Given intricate geological conditions in the study area,seismic data with high signal-to-noise ratios(SNRs) are required for fine-scale characterization of underground structural features and accurate description of the distribution patterns of high-quality shales.The purpose is to improve the probability of penetration of high-quality shales in horizontal wells and the drilling efficiency.Since 2011,the research and application of seismic data acquisition have been continually conducted in the Pengshui area.This study systematically summarized the methods,effects,and deficiencies of relevant projects implemented,and analyzed regional noise characteristics,the influence of channel spacing on static correction,and the degradation of the 3D seismic observation system.The results are shown as follows:(1)The 2D seismic data acquisition profiles displayed relatively clear reflection wave groups of shales in the Wufeng-Longmaxi formations,supporting the target selection and evaluation of normally pressured shale gas reservoirs;(2)The design principles of a 3D observation system,characterized by a wide azimuth,a low shot density,a high lateral fold number,and rich medium-near offset information, were proposed in this study;(3)The 3D seismic data processing profiles manifested high SNRs and clear wave group characteristics.The drilling results reveal accurate 3D structure imaging and a formation depth prediction error below 1%,strongly supporting shale gas exploration and production.The technical system in this study can be applied to similar exploration areas of normally pressured shale gas reservoirs.
|
Received: 16 February 2023
Published: 23 January 2024
|
|
|
|
|
|
Structural location of Pengshui normal pressure shale gas exploration area
|
|
FK spectra recorded at different track distances
|
|
Comparison of near-surface velocity models with different track spacing data
|
|
Profile comparison between 3D seismic(a) and 2D seismic(b) at the same location
|
|
Wulong 3D seismic profile and shale gas horizontal well superposition display
|
|
Profile comparison of 3D seismic with different offset range information in Wulong
|
|
Profile comparison of 3D seismic with different azimuth range information in Wulong
|
|
Relationship between S/N ratio and coverage times of 3D seismic in Wulong
|
项目 | 二维 | 武隆三维 | 武隆东三维 | 侏罗系砂岩地表区 | 碳酸盐岩地表区 | 观测系统 | 1L1S600T | 20L7S216T | 20L3S224T | 20L3S216T | 面元/线元 | 10 m | 20 m×20 m | 20 m×20 m | 20 m×20 m | 覆盖次数 | 100 | 12(纵)×5(横)=60次 | 7(纵)×10(横)=70次 | 9(纵)×10(横)=90次 | 道间距 | 20 m | 40 m | 40 m | 40 m | 检波线距 | | 280 m | 240 m | 240 m | 炮点距 | 60 m | 80 m | 80 m | 80 m | 炮线距 | | 360 m | 320 m | 240 m | 接收道数 | 600道 | 216×20=4320道 | 224×20=4480道 | 216×20=4320道 | 最大非纵距 | | 2900 m | 2380 m | 2380 m | 横纵比 | | 0.67 | 0.53 | 0.55 | 束线间滚动距离 | | 560 m | 240 m | 240 m | 3000 m内覆盖次数 | 50 | 33~37 | 41~43 | 55~57 | 炮点密度 | | 34.72个/km2 | 39.06个/km2 | 52.08个/km2 | 炮道密度 | | 15万道/km2 | 17.5万道/km2 | 22.5万道/km2 |
|
Shale gas seismic observation system parameter in Pengshui area
|
|
Comparison of Wulong 3D(a) and Wulong East 3D(b) physical point layout mode
|
|
Comparison of stack profiles between Wulong East 3D(a) and Wulong 3D(b) under the same surface and structural conditions
|
|
Wulong East 3D seismic profile and shale gas horizontal well superposition display
|
[1] |
聂海宽, 何治亮, 刘光祥, 等. 中国页岩气勘探开发现状与优选方向[J]. 中国矿业大学学报, 2020, 49(1):13-35.
|
[1] |
Nie H K, He Z L, Liu G X, et al. Status and direction of shale gas exploration and development in China[J]. Journal of China University of Mining & Technology, 2020, 49(1):13-35.
|
[2] |
马新华. 四川盆地南部页岩气富集规律与规模有效开发探索[J]. 天然气工业, 2018, 38(10):1-10.
|
[2] |
Ma X H. Enrichment laws and scale effective development of shale gas in the southern Sichuan Basin[J]. Natural Gas Industry, 2018, 38(10):1-10.
|
[3] |
何希鹏. 四川盆地东部页岩气甜点评价体系与富集高产影响因素[J]. 天然气工业, 2021, 41(1):59-71.
|
[3] |
He X P. Sweet spot evaluation system and enrichment and high yield influential factors of shale gas in Nanchuan area of eastern Sichuan Basin[J]. Natural Gas Industry, 2021, 41(1):59-71.
|
[4] |
郭彤楼, 蒋恕, 张培先, 等. 四川盆地外围常压页岩气勘探开发进展与攻关方向[J]. 石油实验地质, 2020, 42(5):837-845.
|
[4] |
Guo T L, Jiang S, Zhang P X, et al. Progress and direction of exploration and development of normally-pressured shale gas from the periphery of Sichuan Basin[J]. Petroleum Geology and Experiment, 2020, 42(5):837-845.
|
[5] |
郭彤楼. 页岩气勘探开发中的几个地质问题[J]. 油气藏评价与开发, 2019, 9(5):14-19.
|
[5] |
Guo T L. A few geological issues in shale gas exploration and development[J]. Reservoir Evaluation and Development, 2019, 9(5):14-19.
|
[6] |
何贵松, 何希鹏, 高玉巧, 等. 渝东南盆缘转换带金佛斜坡常压页岩气富集模式[J]. 天然气工业, 2020, 40(6):50-60.
|
[6] |
He G S, He X P, Gao Y Q, et al. Enrichment model of normal-pressure shale gas in the Jinfo slope of the basin-margin transition zone in Southeast Chongqing[J]. Natural Gas Industry, 2020, 40(6):50-60.
|
[7] |
何希鹏, 何贵松, 高玉巧, 等. 渝东南盆缘转换带常压页岩气地质特征及富集高产规律[J]. 天然气工业, 2018, 38(12):1-14.
|
[7] |
He X P, He G S, Gao Y Q, et al. Geological characteristics and enrichment laws of normal-pressure shale gas in the basin-margin transition zone of SE Chongqing[J]. Natural Gas Industry, 2018, 38(12):1-14.
|
[8] |
方志雄. 中国南方常压页岩气勘探开发面临的挑战及对策[J]. 油气藏评价与开发, 2019, 9(5):1-13.
|
[8] |
Fang Z X. Challenges and countermeasures for exploration and development of normal pressure shale gas in southern China[J]. Reservoir Evaluation and Development, 2019, 9(5):1-13.
|
[9] |
方志雄, 何希鹏. 渝东南武隆向斜常压页岩气形成与演化[J]. 石油与天然气地质, 2016, 37(6):819-827.
|
[9] |
Fang Z X, He X P. Formation and evolution of normal pressure shale gas reservoir in Wulong Syncline,Southeast Chongqing,China[J]. Oil & Gas Geology, 2016, 37(6):819-827.
|
[10] |
曲寿利. 物探新技术是降低油气勘探开发成本的重要利器[J]. 石油物探, 2019, 58(6):783-790.
|
[10] |
Qu S L. New geophysical exploration technology:An important tool to reduce the cost of oil and gas exploration and development[J]. Geophysical Prospecting for Petroleum, 2019, 58(6):783-790.
|
[11] |
杨勤勇, 郭恺, 李博, 等. TTI各向异性地震成像技术及其在页岩气勘探中的应用[J]. 石油物探, 2019, 58(6):882-889,897.
|
[11] |
Yang Q Y, Guo K, Li B, et al. Application of TTI anisotropic seismic imaging in shale gas exploration[J]. Geophysical Prospecting for Petroleum, 2019, 58(6):882-889,897.
|
[12] |
陈祖庆, 杨鸿飞, 王静波, 等. 页岩气高精度三维地震勘探技术的应用与探讨——以四川盆地焦石坝大型页岩气田勘探实践为例[J]. 天然气工业, 2016, 36(2):9-20.
|
[12] |
Chen Z Q, Yang H F, Wang J B, et al. Application of 3D high-precision seismic technology to shale gas exploration:A case study of the large Jiaoshiba shale gas field in the Sichuan Basin[J]. Natural Gas Industry, 2016, 36(2):9-20.
|
[13] |
薛野, 任俊兴, 杨帆, 等. 南川复杂构造带常压页岩气变密度三维地震采集技术的实践与认识[J]. 科学技术与工程, 2021, 21(29):12461-12469.
|
[13] |
Xue Y, Ren J X, Yang F, et al. The practice and understanding of variable-density 3D seismic exploration technology of normal pressure shale gas in Nanchuan Complex Structural Belt[J]. Science Technology and Engineering, 2021, 21(29):12461-12469.
|
[14] |
周晓冀, 杨智超, 杜文军, 等. 四川盆地泸州区块页岩气三维地震覆盖密度优选[J]. 天然气勘探与开发, 2021, 44(2):93-99.
|
[14] |
Zhou X J, Yang Z C, Du W J, et al. Optimizing 3D seismic coverage density in Luzhou shale-gas block,Sichuan Basin[J]. Natural Gas Exploration and Development, 2021, 44(2):93-99.
|
[15] |
薛野, 杨帆, 刘厚裕, 等. 彭水地区碳酸盐岩山地地表地震激发接收因素优选及效果[J]. 物探与化探, 2022, 46(3):608-617.
|
[15] |
Xue Y, Yang F, Liu H Y, et al. Determination of the optimal factors of seismic excitation and reception on the ground surface of carbonate mountainous areas in Pengshui area and its seismic acquisition effects[J]. Geophysical and Geochemical Exploration, 2022, 46(3):608-617.
|
[16] |
薛野, 刘田田. 贵州织金浅煤层地震勘探技术的实践与认识[J]. 煤田地质与勘探, 2018, 46(4):161-167.
|
[16] |
Xue Y, Liu T T. The practice and understanding of seismic exploration technology of shallow coal seams in Zhijin area,Guizhou Province[J]. Coal Geology & Exploration, 2018, 46(4):161-167.
|
[17] |
吕公河. 宽线地震勘探观测系统参数对信噪比的影响作用分析探讨[J]. 石油物探, 2013, 52(5):495-501,442.
|
[17] |
Lyu G H. Discussion on the influence of geometry parameters of wideline seismic survey on S/N[J]. Geophysical Prospecting for Petroleum, 2013, 52(5):495-501,442.
|
[18] |
刘宜文, 罗勇, 尹丽丽, 等. 准南复杂山地探区基准面静校正方法与质控策略[J]. 物探与化探, 2018, 42(6):1209-1214.
|
[18] |
Liu Y W, Luo Y, Yin L L, et al. Strategy of static correction in complicated mountainous area on the south margin of Junggar Basin[J]. Geophysical and Geochemical Exploration, 2018, 42(6):1209-1214.
|
[19] |
敬朋贵, 殷厚成, 陈祖庆. 南方复杂山地三维地震勘探实践与效果分析[J]. 石油物探, 2010, 49(5):495-499,19.
|
[19] |
Jing P G, Yin H C, Chen Z Q. 3D seismic exploration practice and effect analysis in complicated mountainous area in Southern China[J]. Geophysical Prospecting for Petroleum, 2010, 49(5):495-499,19.
|
[20] |
冯凯, 和冠慧, 尹成, 等. 宽方位三维观测系统的发展现状与趋势[J]. 西南石油学院学报, 2006, 28(6):24-28,113.
|
[20] |
Feng K, He G H, Yin C, et al. Present situation and prospect of wide-azimuth 3D inspection system[J]. Journal of Southwest Petroleum University, 2006, 28(6):24-28,113.
|
[21] |
刘依谋, 印兴耀, 张三元, 等. 宽方位地震勘探技术新进展[J]. 石油地球物理勘探, 2014, 49(3):596-610,420.
|
[21] |
Liu Y M, Yin X Y, Zhang S Y, et al. Recent advances in wide-azimuth seismic exploration[J]. Oil Geophysical Prospecting, 2014, 49(3):596-610,420.
|
[22] |
刘传虎. 宽方位地震技术与隐蔽油气藏勘探[J]. 石油物探, 2012, 51(2):138-145,104.
|
[22] |
Liu C H. Wide azimuth seismic technique and subtle hydrocarbon reservoir exploration[J]. Geophysical Prospecting for Petroleum, 2012, 51(2):138-145,104.
|
[23] |
屠世杰. 高精度三维地震勘探中的炮密度、道密度选择——YA高精度三维勘探实例[J]. 石油地球物理勘探, 2010, 45(6):926-936,792.
|
[23] |
Tu S J. Selection of shot density and trace density in high precision 3D seismic exploration:A high precision 3D exploration case in YA area[J]. Oil Geophysical Prospecting, 2010, 45(6):926-936,792.
|
[24] |
陈吴金, 于静, 张怀邦, 等. 高密度地震采集弱反射信号的变化规律[J]. 物探与化探, 2014, 38(4):701-710,741.
|
[24] |
Chen W J, Yu J, Zhang H B, et al. Variation regularity of weak reflected signal in high density seismic acquisition[J]. Geophysical and Geochemical Exploration, 2014, 38(4):701-710,741.
|
[25] |
齐中山, 王静波, 张文军, 等. 米仓—大巴山山前带地震勘探进展及下一步攻关方向探讨[J]. 石油物探, 2018, 57(3):458-469.
|
[25] |
Qi Z S, Wang J B, Zhang W J, et al. Progress and research direction of seismic exploration in the Micang-Dabashan piedmont zone,China[J]. Geophysical Prospecting for Petroleum, 2018, 57(3):458-469.
|
[1] |
WANG Tong, Liu Jian-Xun, WANG Xing-Yu, LI Guang-Cai, TIAN Mi. Suppression of random noise in deep seismic reflection data using adaptive threshold-based Shearlet transform[J]. Geophysical and Geochemical Exploration, 2022, 46(3): 704-713. |
[2] |
DUAN Ying, ZHANG Gao-Cheng, TAN Ya-Li. Seismic imaging of high-steep structural zone in Biyang Depression[J]. Geophysical and Geochemical Exploration, 2021, 45(4): 981-989. |
|
|
|
|