|
|
A method for building a 3D crust-mantle velocity reference model: A case study of the central South China Block |
CHEN Zhong-Wei1( ), GUO Liang-Hui1( ), CHEN Yuan-Ke2, TANG Han-Han1 |
1. School of Geophysics and Information Technology,China University of Geosciences,Beijing 100083,China 2. Zhejiang Earthquake Agency,Hangzhou 310013,China |
|
|
Abstract Crust-mantle velocity structures,which provide an important basis for research on deep structures and dynamic mechanisms,are primarily determined using seismic tomography.A high-quality and fine-scale velocity reference model can provide an effective initial model and constraints for seismic tomography.However,existing methods for building a crust-mantle velocity reference model suffer some shortcomings,such as the lack of fine-scale building of the surface model and the partial distortion of the crust-mantle model caused by vertical global correction.To overcome these shortcomings,this study proposed an improved method for building a 3D crust-mantle velocity reference model.Firstly,the optimal Moho and sedimentary basement models were selected and constructed.Then,these boundary models were used to constrain and adjust the crust and upper mantle models vertically,including the linear correction and weighted fusion through partial compression and stretching.As a result,a crust-mantle medium model was established.Subsequently,the surface model was built in combination with prior geological data.Finally,these models were combined to construct a 3D crust-mantle velocity reference model.Using this method,this study built a 3D crust-mantle S-wave velocity reference model for the central South China Block by collecting previous crust-mantle structure models and geological data of the block.The comparative analysis shows that the model built in this study enjoys higher resolution and more accurate regional Moho,thus verifying the effectiveness of the method.This study provides a reliable 3D velocity reference model for the central South China Block.
|
Received: 28 December 2022
Published: 11 October 2023
|
|
|
|
|
|
The flowchart of constructing 3D velocity reference model of the crust-mantle (The crustal interfaces represent the Moho and sedimentary interfaces)
|
">
|
Diagram of the partial "compression and stretching" correction of the crust-mantle structure vertically
|
来源 | 研究区范围 | 分辨率 | 研究方法 | 研究结果 | 研究深度 | 权重 | Han等, 2021[47] | 18°N~54°N,72°E~136°E | 0.5°×0.5°×(5~20) km | 体波与面波联合反演 | vs结构 | 150 km | 0.1 | Shen等, 2016[38] | 18°N~54°N,72°E~136°E | 0.5°×0.5°×0.5 km | 地震层析成像 | vs结构 | 200 km | 0.35 | Zhou等, 2012[40] | 21°N~32°N,104°E~122°E | 0.5°×0.5°×0.1 km | 地震层析成像 | vs结构 | 150 km | 0.55 | Guo等, 2019[37] | 21°N~32°N,104°E~122°E | | 接收函数与重力联合反演 | 地壳厚度 | | 1 |
|
The previous crust-mantle models
|
地区 | 前寒武 纪地层 | 显生 宇 | 花岗 岩 | 中性 岩 | 基性 岩 | 超基 性岩 | 喷出 岩 | 贵州 | 2.69 | 2.51 | 2.61 | 2.63 | 2.83 | 3.11 | 2.62 | 湖南 | 2.63 | 2.53 | 2.66 | 2.75 | 2.9 | 2.9 | 2.65 | 广西 | 2.58 | 2.59 | 2.55 | 2.65 | 2.84 | 2.91 | 2.55 | 广东 | 2.60 | 2.57 | 2.55 | 2.59 | 2.84 | 3.01 | 2.59 | 福建 | 2.65 | 2.56 | 2.62 | 2.8 | 2.92 | 3.23 | 2.6 | 浙江 | 2.65 | 2.56 | 2.62 | 2.8 | 2.92 | 3.23 | 2.6 | 平均 | 2.62 | 2.55 | 2.61 | 2.72 | 2.88 | 3.1 | 2.6 |
|
Density of rocks in South China block
|
|
Moho reference model of the central South China block The white dotted line denotes the location of the profile AB
|
|
The S-wave velocity reference model of near-surface in the central South China block
|
|
The 3D S-wave velocity reference model of crust-mantle in the central South China block
|
|
Maps showing S-wave velocity structure of reference model at different depths in the central South China block
|
38] model;b—Han et al.[47] model;c—Zhou et al.[40] model;d—our model;The white line represents the Moho depth,the profile location is shown in fig.3 ">
|
Comparisons of different S-wave velocity models in profile AB a—Shen et al.[38] model;b—Han et al.[47] model;c—Zhou et al.[40] model;d—our model;The white line represents the Moho depth,the profile location is shown in fig.3
|
[1] |
李贞, 郭飚, 刘启元, 等. 地震层析成像中模型参数化研究进展[J]. 地球物理学进展, 2015, 30(4):1616-1624.
|
[1] |
Li Z, Guo B, Liu Q Y, et al. Parameterization in seismic tomography[J]. Progress in Geophysics, 2015, 30(4):1616-1624.
|
[2] |
方洪健, 刘影, 姚华建, 等. 区域尺度地震体波和面波走时联合成像:进展与展望[J]. 地球与行星物理论评, 2023, 54(3):252-269.
|
[2] |
Fang H J, Liu Y, Yao H J, et al. Regional-scale joint seismic body- and surface-wave travel time tomography[J]. Reviews of Geophysics and Planetary Physics, 2023, 54(3):252-269.
|
[3] |
李慧. 地震层析成像初始模型反演算法研究及应用[D]. 成都: 成都理工大学, 2020.
|
[3] |
Li H. Research and application of initial model inversion algorithm of seismic tomography[D]. Chengdu: Chengdu University of Technology, 2020.
|
[4] |
张明辉, 刘有山, 侯爵, 等. 近地表地震层析成像方法综述[J]. 地球物理学进展, 2019, 34(1):48-63.
|
[4] |
Zhang M H, Liu Y S, Hou J, et al. Review of seismic tomography methods in near-surface structures reconstruction[J]. Progress in Geophysics, 2019, 34(1):48-63.
|
[5] |
赵盼盼, Michel C, 刘启元. 地震环境噪声成像中的地形影响校正[J]. 地球物理学报, 2020, 63(10):3764-3774.
|
[5] |
Zhao P P, Michel C, Liu Q Y. Topographic correction in ambient noise tomography[J]. Chinese Journal of Geophysics, 2020, 63(10):3764-3774.
|
[6] |
范文渊, 陈永顺, 唐有彩, 等. 青藏高原东部和周边地区地壳速度结构的背景噪声层析成像[J]. 地球物理学报, 2015, 58(5):1568-1583.
|
[6] |
Fan W Y, Chen Y S, Tang Y C, et al. Crust and upper mantle velocity structure of the eastern Tibetan Platean and adjacent regions from ambient noise tomography[J]. Chinese Journal of Geophysics, 2015, 58(5):1568-1583.
|
[7] |
罗炬, 李志海, 王海涛. 天山中东段地震层析成像的初步研究[J]. 地震工程学报, 2014, 36(1):107-113,169.
|
[7] |
Luo J, Li Z H, Wang H T. A preliminary study on seismic tomography in mid-eastern segment of Tianshan Mountain[J]. China Earthquake Engineering Journal, 2014, 36(1):107-113,169.
|
[8] |
邓晓果, 王夫运, 马策军, 等. 人工地震测深揭示云南中部地区不同构造单元地壳结构特征[J]. 地震研究, 2022, 45(4):517-525.
|
[8] |
Deng X G, Wang F Y, Ma C J, et al. The crustal structure characteristics of different tectonic units in central Yunnan revealed by artificial seismic sounding[J]. Journal of Seismological Research, 2022, 45 (4):517-525.
|
[9] |
李健明, 孙新蕾, 王爽, 等. 九嶷山及邻区地壳结构噪声成像及其对华南地区的构造演化启示[J]. 地球物理学报, 2020, 63(1):184-195.
|
[9] |
Li J M, Sun X L, Wang S, et al. Crustal shear wave velocity structure near the Jiuyishan area from seismic ambient noise tomography:Implications for tectonic evolution in South China[J]. Chinese Journal of Geophysics, 2020, 63(1):184-195.
|
[10] |
眭怡, 吴庆举, 张瑞青. 基于三重震相拟合的华南地区上地幔P波与S波速度结构[J]. 地球物理学报, 2018, 61(8):3237-3250.
|
[10] |
Sui Y, Wu Q J, Zhang R Q. P-wave and S-wave velocity structures of upper mantle beneath South China derived from seismic triplications[J]. Chinese Journal of Geophysics, 2018, 61(8):3237-3250.
|
[11] |
陈飞. 利用面波与重力的联合反演确定中国大陆三维岩石圈速度结构[D]. 合肥: 中国科学技术大学, 2017.
|
[11] |
Chen F. Lithospheric shear wave tomography of continental Chinaby joint inversion of surface-wave and satellite gravity data[D]. Hefei: University of Science and Technology of China, 2017.
|
[12] |
金震. 福建及台湾海峡中南部三维地壳结构研究[D]. 哈尔滨: 中国地震局工程力学研究所, 2018.
|
[12] |
Jin Z. Study on three-dimensional crustal structure in the central and southern Fujian Strait and Taiwan Strait[D]. Haerbin: lnstitute of Engineering Mechanics,CEA, 2018.
|
[13] |
蔡辉腾, 金星, 王善雄, 等. 宁化—大田—惠安地壳构造与速度结构特征[J]. 地球物理学报, 2016, 59(1):157-168.
|
[13] |
Cai H T, Jin X, Wang S X, et al. The crust structure and velocity structure characteristics beneath Ninghua-Datian-Hui'an[J]. Chinese Journal of Geophysics, 2016, 59(1):157-168.
|
[14] |
邓阳凡, 李守林, 范蔚茗, 等. 深地震测深揭示的华南地区地壳结构及其动力学意义[J]. 地球物理学报, 2011, 54(10):2560-2574.
|
[14] |
Deng Y F, Li S L, Fan W M, et al. Crustal structure beneath South China revealed by deep seismic soundings and its dynamics implications[J]. Chinese Journal of Geophysics, 2011, 54(10):2560-2574.
|
[15] |
冯策, 焦明若, 于海英, 等. 辽宁及邻区S波速度结构反演[J]. 大地测量与地球动力学, 2022, 42(8):829-834.
|
[15] |
Feng C, Jiao M R, Yu H Y, et al. Inversion of S-wave velocity structure in Liaoning and adjacent areas[J]. Journal of Geodesy and Geodynamics, 2022, 42(8):829-834.
|
[16] |
邓晓果, 王夫运, 刘宝峰, 等. 宜宾-金川剖面地壳上部速度结构及构造含义[J]. 大地测量与地球动力学, 2018, 38(12):1256-1261.
|
[16] |
Deng X G, Wang F Y, Liu B F, et al. Upper crustal velocity structure of the Yibin Jinchuan profile and its implications[J]. Journal of Geodesy and Geodynamics, 2018, 38(12):1256-1261.
|
[17] |
李飞, 俞贵平, 梁姗姗, 等. 基于三维模型中的射线追踪方法测定鲁甸Ms6.5地震震源深度[J]. 中国地震, 2020, 36(2):333-340.
|
[17] |
Li F, Yu G P, Liang S S, et al. Focal depth determination of Ludian Ms 6.5 earthquake with a segmentally iterative ray tracing method in 3D geological models[J]. Earthquake Research in China, 2020, 36(2):333-340.
|
[18] |
罗凡, 严加永, 付光明, 等. Crust1.0地壳模型及其应用:以长江中下游成矿带为例[J]. 地质学报, 2020, 94(2):648-660.
|
[18] |
Luo F, Yan J Y, Fu G M, et al. Crust 1.0 crustal model and its application:an example from Middle-Lower Yangtze Metallogenic Belt[J]. Acta Geologica Sinica, 2020, 94(2):648-660.
|
[19] |
罗凡, 严加永, 付光明, 等. 华南地区地壳厚度变化及对成矿类型的制约:来自卫星重力数据的约束[J]. 中国地质, 2019, 46(4):759-774.
|
[19] |
Luo F, Yan J Y, Fu G M, et al. Crust thickness and its apocalyptic of mineralization in South China:Constraint from satellite gravity data[J]. Geology in China, 2019, 46(4):759-774.
|
[20] |
曲平, 陈永顺, 于勇, 等. 华南地区上地幔P波三维速度结构和动力学意义:来自有限频层析成像的证据[J]. 地球物理学报, 2020, 63(8):2954-2969.
|
[20] |
Qu P, Chen Y S, Yu Y, et al. 3D velocity structure of upper mantle beneath South China and its tectonic implications:Evidence from finite frequency seismic tomography[J]. Chinese Journal of Geophysics, 2020, 63(8):2954-2969.
|
[21] |
李雪垒, 郝天珧, 李志伟. 中国东南部P波速度结构与构造分析[J]. 地球物理学报, 2020, 63(5):1802-1815.
|
[21] |
Li X L, Hao T Y, Li Z W. P wave velocity structure and tectonic analysis beneath southeastern China[J]. Chinese Journal of Geophysics, 2020, 63(5):1802-1815.
|
[22] |
王敏玲, 陈赟, 梁晓峰, 等. 华南及南海北部地区瑞利面波层析成像[J]. 地球物理学报, 2015, 58(6):1963-1975.
|
[22] |
Wang M L, Chen Y, Liang X F, et al. Surface wave tomography for South China and the northern South China Sea area[J]. Chinese Journal of Geophysics, 2015, 58(6):1963-1975.
|
[23] |
何立朋. 华南典型地区速度结构研究及其地质意义[D]. 广州: 中国科学院大学(中国科学院广州地球化学研究所), 2019.
|
[23] |
He L P. Velocity Structures at typical areas in South China and their tectonic implications[D]. Guangzhou: University of Chinese Academy of Sciences(Guangzhou Institute of Geochemistry,Chinese Academy of Sciences), 2019.
|
[24] |
谭皓原. 华南地区地壳及上地幔三维体波速度结构研究[D]. 成都: 成都理工大学, 2014.
|
[24] |
Tan H Y. Body wave study of crustal and upper mantle velocity structure in South China[D]. Chengdu: Chengdu University of Technology, 2014.
|
[25] |
罗松, 姚华建, 李秋生, 等. 长江中下游成矿带高分辨地壳三维横波速度结构及其形成的深部动力学背景[J]. 中国科学:地球科学, 2019, 49(9):1394-1412.
|
[25] |
Luo S, Yao H J, Li Q S, et al. High-resolution 3D crustal S-wave velocity structure of the Middle-Lower Yangtze River Metallogenic Belt and implications for its deep geodynamic setting[J]. Science China Earth Sciences, 2019, 49(9):1361-1378.
|
[26] |
Tesauro M, Kaban M K, Cloetinfh A P L. EuCRUST-07:A new reference model for the European crust[J]. Geophysical Research Letters, 2008, 35(5):1-5.
|
[27] |
Grad M, Tiira T, ESC Working Group. The Moho depth map of the European Plate[J]. Geophysical Journal International, 2009, 176(1):279-292.
|
[28] |
Molinari I, Morelli A. EPcrust:A reference crustal model for the European Plate[J]. Geophysical Journal International, 2011, 185(1):352-364.
|
[29] |
Artemieva I M, Thybo H. EUNAseis:A seismic model for Moho and crustal structure in Europe,Greenland,and the North Atlantic region[J]. Tectonophysics, 2013, 609:97-153.
|
[30] |
Magrin A, Rossi G. Deriving a new crustal model of Northern Adria:The Northern Adria Crust (NAC) model[J]. Frontiers in Earth Science, 2020, 8:89.
|
[31] |
Arroucau P, Custodio S, Civiero C, et al. PRISM3D:A 3D reference seismic model for Iberia and adjacent areas[J]. Geophysical Journal International, 2021, 225(2):789-810.
|
[32] |
郑天愉, 段永红, 许卫卫, 等. 华北地区地壳—上地幔地震波速度结构模型v2.0[DB /OL], http://www.craton.cn/data.
|
[32] |
Zheng T Y, Duan Y H, Xu W W, et al. Structural model of crust-upper mantle seismic wave velocity in North China v2.0[DB /OL], http://www.craton.cn/data.
|
[33] |
Brocher T M. Empirical relations between elastic wavespeeds and density in the Earth's crust[J]. Bulletin of the seismological Society of America, 2005, 95(6):2081-2092.
|
[34] |
Zhao G, Cawood P A. Precambrian geology of China[J]. Precambrian Research, 2012, 222-223(2012):13-54.
|
[35] |
宋传中, 李加好, 严加永, 等. 华南大陆东部若干构造问题的思考[J]. 中国地质, 2019, 46(4):704-722.
|
[35] |
Song C Z, Li J H, Yan J Y, et al. A tentative discussion on some tectonic problems in the east of South China continent[J]. Geology in China, 2019, 46(4):704-722.
|
[36] |
严加永, 吕庆田, 张永谦, 等. 江南造山带深部边界及成矿制约:来自综合地球物理的认识[J]. 岩石学报, 2022, 38(2):544-558.
|
[36] |
Yan J Y, Lyu Q T, Zhang Y Q, et al. The deep boundaries of Jiangnan orogenic belt and its constraints on metallogenic:From the understanding of integrated geophysics[J]. Acta Petrologica Sinica, 2022, 38(2):544 -558.
|
[37] |
Guo L, Gao R, Shi L. Crustal thickness and Poisson's ratios of South China revealed from joint inversion of receiver function and gravity data[J]. Earth and Planetary Science Letters, 2019, 510(2019):142-152.
|
[38] |
Shen W S, Michael H R, Kang D, et al. A seismic reference model for the crust and uppermost mantle beneath China from surface wave dispersion[J]. Geophysical Journal International, 2016, 206(2):954-979.
|
[39] |
邢康. 利用背景噪声层析成像反演华南地区S波速度结构[D]. 北京: 中国地质大学(北京), 2015.
|
[39] |
Xing K. S-wave velocity structure of the South China from ambient noise tomography[D]. Beijing: China University of Geosciences(Beijing), 2015.
|
[40] |
Zhou L, Xie J, Shen W, et al. The structure of the crust and uppermost mantle beneath South China from ambient noise and earthquake tomography[J]. Geophysical Journal International, 2012, 189(3):1565-1583.
|
[41] |
Lin F C, Ritzwoller M H, Snieder R. Eikonal tomography:Surface wave tomography by phase front tracking across a regional broad-band seismic array[J]. Geophysical Journal International, 2009, 177(3):1091-1110.
|
[42] |
Li Y, Gao M, Wu Q. Crustal thickness map of the Chinese mainland from teleseismic receiver functions[J]. Tectonophysics, 2013, 611:51-60.
|
[43] |
He C, Dong S, Santosh M, et al. Seismic evidence for a Geosuture between the Yangtze and Cathaysia Blocks,South China[J]. Scientific Reports, 2013, 3(1):1-7.
|
[44] |
Teng J, Zhang Z, Zhang X, et al. Investigation of the Moho discontinuity beneath the Chinese mainland using deep seismic sounding profiles[J]. Tectonophysics, 2013, 609:202-216.
|
[45] |
熊小松. 中国大陆莫霍面深度与变化特征及其地球动力学意义[D]. 北京: 中国地质科学院. 2010.
|
[45] |
Xiong X S. Moho depth and variation of the continent in China and its geodynamic implications[D]. Beijing: Chinese Academy of Geological Sciences, 2010.
|
[46] |
熊小松, 高锐, 李秋生, 等. 深地震探测揭示的华南地区莫霍面深度[J]. 地球学报, 2009, 30(6):774-786.
|
[46] |
Xiong X S, Gao R, Li Q S, et al. The Moho depth of South China revealed by seismic probing[J]. Acta Geo scientica Sinica, 2009, 30(6):774-786.
|
[47] |
Han S C, Zhang H J, Xin H L, et al. USTClitho2.0:Updated unified seismic tomography models for Continental China Lithosphere from joint inversion of body-wave arrival times and surface-wave dispersion data[J]. Seismological Research Letters, 2021, 93 (1):201-215.
|
[48] |
莘海亮. 中国大陆岩石圈地震体波三维走时速度成像与地震定位研究[D]. 合肥: 中国科学技术大学, 2020.
|
[48] |
Xin H L. Three-dimensional seismic travel time tomography of lithosphere of Continental China and earthquake relocations[D]. Hefei: University of Science and Technology of China, 2020.
|
[49] |
Xin H, Zhang H, Kang M, et al. High-resolution lithospheric velocity structure of continental China by double-difference seismic travel-time tomography[J]. Seismological Research Letters, 2019, 90(1):229-241.
|
[50] |
杨文采. 扬子区地壳密度扰动成像和华南燕山期花岗岩成因[J]. 地质论评, 2018, 64(5):1045-1054.
|
[50] |
Yang W C. Crustal density imaging of Yangtze Craton and formation of the Yanshanian Granitites in South China[J]. Geological Review, 2018, 64(5):1045-1054.
|
[51] |
黄金明. 重磁数据处理解释技术在华南地区岩体圈定与形态反演中的应用研究[D]. 北京: 中国地质大学(北京), 2013.
|
[51] |
Huang J M. The study of gravity and magnetic data processing and interpretation method on boundary delineation and shape inversion of rock body in South China[D]. Beijing: China University of Geosciences(Beijing), 2013.
|
[52] |
马文. 江南造山带大万金矿热液蚀变地质、地球化学特征及其对金成矿的意义[D]. 南昌: 东华理工大学, 2022.
|
[52] |
Ma W. Geological and geochemical characteristics of hydrothermal alteration in the Dawan deposit in the Jiangnan Orogenic Belt and implications for gold mineralization[D]. Nanchang: East China University of Technology, 2022.
|
[53] |
梁学堂, 全浩理, 马玄龙, 等. 湖北大冶铜山口地区地球物理深部找矿模式[J]. 物探与化探, 2012, 36(4):697-704.
|
[53] |
Liang X T, Quan H L, Ma X L, et al. Geophysical deep ore-prospecting model for Tongshankou area of Daye,Hubei Province[J]. Geophysical and Geochemical Exploration, 2012, 36(4):697-704.
|
[54] |
符平礼, 陈康, 杨富强, 等. 基于地球物理重磁特征的扬子古陆与华夏陆块边界划分[J]. 矿产与地质, 2021, 35(3):503-510,516.
|
[54] |
Fu P L, Chen K, Yang F Q, et al. Boundary division of Yangtze ancient land and Cathaysia land block in the Guangxi section based on geophysical gravity and magnetic feature[J]. Mineral Resources and Geology, 2021, 35(3):503-510,516.
|
[1] |
Jun-Jie ZHOU, Cong CHEN, Xiang YU, Ling-Ju GAO, Tao CHEN. Construction and application of reference model to three-dimensional property inversion of gravity data in the mining area[J]. Geophysical and Geochemical Exploration, 2020, 44(4): 878-885. |
[2] |
Dai-Li XU, Bao-Shan TANG, Wen-Bo WEI. Electrical structure characteristics of Longmen fault zone and its adjacent areas[J]. Geophysical and Geochemical Exploration, 2019, 43(1): 17-27. |
|
|
|
|