|
|
A new three-water model based on the complex resistivity-NMR joint survey experiment |
ZHANG Li-Hua( ), PAN Bao-Zhi, SHAN Gang-Yi( ), A Ru-Han, ZHANG Peng-Ji |
College of Geoexploration Science and Technology,Jilin University,Changchun 130026,China |
|
|
Abstract Three-water(free water,microcapillary water,and clay water) models are widely used in the interpretation of clastic reservoirs.However,these models involve many parameters,some of which are difficult to determine.The methods for determining these parameters are mostly based on the statistics of a large amount of experimental data in study areas.To solve the multi-parameter problem in the application of three-water models,this study proposed a new method to calculate the cation exchange capacity based on the complex resistivity data.Accordingly,it built a new three-water model.Then,it determined the parameter values of the three-water model using nuclear magnetic resonance (NMR) data combined with the optimal genetic algorithm.The resistivity of the completely water-saturated rock samples calculated from these parameters had a relative error of 0.3417 compared to the resistivity obtained from experimental measurements.The method proposed in this study is simple and easy to use.Moreover,this method does not rely on too many experimental data but requires only complex resistivity and NMR experimental data.Therefore,this method can be used as a reference for determining the parameters of new three-water models of other areas.
|
Received: 21 September 2022
Published: 11 October 2023
|
|
|
|
|
|
Schematic diagram of three water model
|
|
Distribution of three kinds of water on T2 spectrum
|
|
Basic flow chart of genetic algorithm
|
|
Comparison between optimization results of 6 parameters and measured R0
|
|
Comparison between optimization results of four parameters of well X in QHD oilfield and measured R0
|
|
Relationship of I-Sw
|
[1] |
李舟波. 地球物理测井数据处理与综合解释[M]. 长春: 吉林大学出版社, 2003.
|
[1] |
Li Z B. Geophysical logging data processing and comprehensive interpretation[M]. Changchun: Jilin University Press, 2003.
|
[2] |
曾文冲. 油气藏储集层测井评价技术[M]. 北京: 石油工业出版社, 1991.
|
[2] |
Zeng W C. Logging evaluation technology of oil and gas reservoir[M]. Beijing: Petroleum Industry Press, 1991.
|
[3] |
Poupon A, Leveaux J. Evaluation of water saturations in shaly formation[J]. The Log Analyst, 1971, XII(4): 3-8.
|
[4] |
Simandoux P. Dielectric measurements on porous media: Application to measurement of water saturation: Study of the behavior of argillacious formation[C]// SPWLA 4th Annual Logging Symposium, 1963.
|
[5] |
Waxman M H, Smits L J M. Electrical conductivities in oil bearing shaly sands[C]// SPE, 1968: 107-122.
|
[6] |
Clavier C, Coates G, Dumanoir J. The theoretical and experimental bases for the electric dual-water model for interpretation of shaly sands[J]. SPE Journal, 1984, 24(2): 153-168.
|
[7] |
Givens W W. A conductive rock matric model (CRMM) for the analysis of low-contrast resistivity formation[J]. The Log Analyst, 1987, 28(2) :138-151.
|
[8] |
Crane S D. Impacts of micro porosity, rough pore surface and conductive minerals on saturation calculations from electric measurements: An ex tended Archie's law[C]// West Lafayette:SPWLA 31th Annual Logging Symposium, 1990.
|
[9] |
莫修文. 低阻储层导电模型的建立及解释方法研究[D]. 长春: 长春科技大学, 1998.
|
[9] |
Mo X W. Study on the establishment and interpretation of conductivity model of low resistivity reservoir[D]. Changchun: Changchun University of Science and Technology, 1998.
|
[10] |
莫修文, 贺铎华, 李舟波, 等. 三水导电模型及其在低阻储层解释中的应用[J]. 长春科技大学学报, 2001(1):92-95.
|
[10] |
Mo X W, He D H, Li Z B, et al. The application of three-water conduction model in the interpretation of low-resistivity reservoir[J]. Journal of Changchun University of Science and Technology, 2001(1):92-95.
|
[11] |
张奉东, 潘保芝. 三水模型在腰英台油田储层测井解释中的应用[J]. 世界地质, 2009, 28(2):226-232.
|
[11] |
Zhang F D, Pan B Z. Application of three water model in reservoir log interpretation inYaoyingtai oilfield[J]. World Geology, 2009, 28(2):226-232.
|
[12] |
张丽华, 潘保芝, 李宁, 等. 基于三水模型的储层分类方法评价低孔隙度低渗透率储层[J]. 测井技术, 2011, 35(1):31-35.
|
[12] |
Zhang L H, Pan B Z, Li N, et al. Reservoir Classification Method Based on Three Water Model to Evaluate Low Porosity and Low Permeability Reservoir[J]. Well Logging Technology, 2011, 35(1):31-35.
|
[13] |
郭宇航, 潘保芝, 蒋必辞, 等. 苏里格地区三水模型与数学方法结合的致密砂岩储层评价[J]. 石油物探, 2015, 54(5):621-626.
|
[13] |
Guo Y H, Pan B Z, Jiang B C, et al. Tight sandstone reservoir evaluation by the combination of three-water model and mathematical method in Sulige Area[J]. Geophysical Prospecting for Petroleum, 2015, 54(5):621-626.
|
[14] |
丁永浩. 泥质砂岩三孔隙导电模型测井解释方法研究[D]. 长春: 吉林大学, 2005.
|
[14] |
Ding Y H. Study on shaly sand three-pore conductivity model log interpretation method[D]. Changchun: Jilin Univesity, 2005.
|
[15] |
付晨东, 汪爱云. 新三水模型的改进与参数确定方法[J]. 吉林大学学报:地球科学版, 2022, 52(2):654-661.
|
[15] |
Fu C D, Wang A Y. Improvement of new three-water model and determination of its parameters[J]. Journal of Jilin University:Earth Science Edition, 2022, 52 (2):654-661.
|
[16] |
张丽华, 潘保芝, 李舟波, 等. 新三水导电模型及其在低孔低渗储层评价中的应用[J]. 石油地球物理勘探, 2010, 45(3):431-435,472,318.
|
[16] |
Zhang L H, Pan B Z, Li Z B, et al. New three-water conduction model and its application in evaluation of low porosity and low permeability reservoir[J]. OGP, 2010, 45(3):431-435,472,318.
|
[17] |
王赞惟. 鄂尔多斯盆地东缘临兴地区盒 8段储层微观孔隙结构及渗流特征[J]. 非常规油气, 2020, 7(1):59-64.
|
[17] |
Wang Z W. Microscopic pore structure and the seepage characteristics in tight sandstone reservoir of the 8th member of lower shihezi formation in Linxing area of east Ordos Basin[J]. Unconventional Oil & Gas, 2020, 7(1): 59-64.
|
[18] |
李楚雄, 申宝剑, 卢龙飞, 等. 松辽盆地沙河子组页岩孔隙结构表征—基于低场核磁共振技术[J]. 油气藏评价与开发, 2022, 12(3):468-476.
|
[18] |
Li C X, Shen B J, Lu L F, et al. Pore structure characterization of Shahezi Formation shale in Songliao Basin: Based on low-field nuclear magnetic resonance technology[J]. Petroleum Reservoir Evaluation and Development, 2022, 12(3): 468-476.
|
[19] |
谭茂金, 赵文杰. 用核磁共振测井资料评价碳酸盐岩等复杂岩性储集层[J]. 地球物理学进展, 2006, 21(2):489-493.
|
[19] |
Tan M J, Zhao W J. Description of carbonate reservoirs with NMR log analysis method[J]. Progress in Geophysics, 2006, 21(2): 489-493.
|
[20] |
白松涛, 程道解, 万金彬, 等. 砂岩岩石核磁共振 T2谱定量表征[J]. 石油学报, 2016, 37(3):382-391.
|
[20] |
Bai S T, Cheng D J, Wan J B, et al. Quantitative characterization of sandstone NMR T2 spectrum[J]. Acta Petrolei Sinica, 2016, 37(3): 382-391.
|
[21] |
梁志凯, 李卓, 姜振学, 等. 基于 NMR 和 SEM 技术研究陆相页岩孔隙结构与分形维数特征—以松辽盆地长岭断陷沙河子组页岩为例[J]. 地球科学与环境学报, 2020, 42(3):313-328.
|
[21] |
Liang Z K, Li Z, Jiang Z X, et al. Characteristics of pore structure and fractal dimension in continental shale based on NMR experiment and SEM image analyses: A case study of Shahezi Formation Shale in Changling Fault Depression of Songliao Basin, China[J]. Journal of Earth Sciences and Environment, 2020, 42(3): 313-328
|
[22] |
朱文森. 秦皇岛32-6和绥中36-1油田水驱后砂岩储层变化规律研究[D]. 青岛: 中国石油大学(华东), 2018.
|
[22] |
Zhu W S. Research on the variation law of sandstone reservoir after water flooding in QHD32-6 and SZ36-1 oilfields[D]. Qingdao: China University of Petroleum (East China), 2018.
|
[23] |
张平. 以大庆油田模式虚拟开发秦皇岛32-6油田的数值模拟研究[D]. 大庆: 东北石油大学, 2011.
|
[23] |
Zhang P. Numerical simulation of virtual development of Qinhuangdao 32-6 Oilfield with the mode of Daqing Oilfield[D]. Daqing: Northeast Petroleum University, 2011.
|
[24] |
周明, 孙树栋. 遗传算法理论及应用[M]. 北京: 国防工业出版社, 1999.
|
[24] |
Zhou M, Sun S D. Theory and application of genetic algorithm[M]. Beijing: National Defense Industry Press, 1999.
|
[25] |
王小平, 曹立明. 遗传算法—理论应用与软件实现[M]. 西安: 西安交通大学出版社, 2002.
|
[25] |
Wang X P, Cao L M. Genetic algorithm:Theory application and software implementation[M]. Xi'an: Xi'an Jiaotong University Press, 2002.
|
[26] |
李建军, 邓少贵, 范宜仁, 等. 岩样复电阻率影响因素研究[J]. 测井技术, 2005(1):11-14,90.
|
[26] |
Li J J, Deng S G, Fan Y R, et al. Study on influential factors on Core's complex resistivity[J]. Well Logging Technology, 2005(1):11-14,90.
|
[27] |
Vinegar H J, Waxman M H. Induced polarization of shaly sands[J]. Geophysics, 1984, 49(8):1267-1287.
|
[1] |
DING Zhi-Jun, LUO Wei-Bin, LIAN Wei-Zhang, ZHANG Xing, HE Hai-Pin. One-dimensional inversion of induced polarization sounding data based on the differential evolution algorithm with two-step mutation[J]. Geophysical and Geochemical Exploration, 2023, 47(4): 1033-1039. |
[2] |
ZHANG Yang-Yang, DU Wei, WANG Zhi-Shui, MIAO Xu-Huang, ZHANG Xiang. Application of particle swarm algorithm based on Lévy flight in magnetotelluric inversion[J]. Geophysical and Geochemical Exploration, 2023, 47(4): 986-993. |
|
|
|
|