|
|
New geophysical evidence for karst water-bearing seepage pathways in the Xiaohewei reservoir,Wenshan City |
ZHOU Jian-Bing1( ), LUO Rui-Heng1( ), HE Chang-Kun1, PAN Xiao-Dong2,3,4, ZHANG Shao-Min1, PENG Cong2,3,4 |
1. Institute of Wenshan Hydraulic and Electric Power Survey,Wenshan 663000,China 2. Institute of Karst Geolog of Chinese Academy of Geological Survey,Guilin 541004,China 3. Karst Dynamics Laboratory of Ministry of Natural Resources,Guilin 541004,China 4. International Research Center on Karst under the Auspieces of UNESCO,Guilin 541004,China |
|
|
Abstract As a karst reservoir with the highest altitude in Wenshan City,the Xiaohewei reservoir has been suffering from severe water seepage since its completion.Despite several seepage control treatments,the seepage of the reservoir is still not effectively controlled.To determine the locations of underground karst seepage pathways of the reservoir and guide the later seepage control project,this study detected the seepage pathways in the project area combining the high-density resistivity method and the audio magnetotelluric method.The 2D inversion trial calculation of geophysical testing data indicates the feasibility of combining the two methods.The methods show highly consistent geophysical anomaly positions and can accurately reflect the geological conditions at different burial depths.Thus,their detection results can be referenced for later design and construction.Based on the inversion of measured data,the surface geological data,and the drilling verification means,it is speculated that the reservoir mainly has two NNE-directed karst water-bearing seepage pathways with an elevation of more than 1 800 m.These two karst seepage pathways (No.1 and No.2) are located near the contact zone between limestones and siliceous rocks,and in the karst fissures inside limestones,respectively.Based on the geophysical exploration results,this study also puts forward some suggestions on the deployment of the curtain grouting project for later seepage control of the Xiaohewei reservoir.
|
Received: 20 May 2022
Published: 05 July 2023
|
|
|
|
|
|
Hydrogeological map of the study area
|
介质类型 | 相对介电常数εr | 电阻率/(Ω·m) | 淡水 | 81 | 10~100 | 湿黏土 | 15~40 | 10~200 | 砂页岩 | 5~15 | 10~1000 | 裂隙灰岩 | 7~10 | 500~5000 | 完整灰岩 | 4~8 | >5000 | 硅质岩 | 3.5~10 | 500~20000 |
|
Electrical parameters of rock and soil medium in the study area
|
|
Geological survey of work area and layout of geophysical prospecting work
|
|
Inversion of resistivity section by high density electrical method
|
|
Equivalent section of AMT 2D inversion resistivity of line 4(a) and geological inference interpretation section(b)
|
|
Equivalent section of AMT 2D inversion resistivity of line 5(a) and geological inference interpretation section(b)
|
|
Equivalent section of AMT 2D inversion resistivity of line 6 (a) and geological inference interpretation section (b)
|
|
Histogram of borehole lithology of ZK1(a) and ZK2(b) in Xiaohewei reservoir
|
[1] |
唐杰. 查日扣水电站坝址区岩溶发育特征及渗漏研究[D]. 成都: 成都理工大学, 2014.
|
[1] |
Tang J. Research on karst development characteristics and seepage in the dam site area of Charikou Hydropower Station[D]. Chengdu: Chengdu University of Technology, 2014.
|
[2] |
陈贻祥, 邬健强, 黄奇波, 等. 水中自然电场法探测病态水库岩溶渗漏通道——以金鸡河水库一级水电站为例[J]. 中国岩溶, 2018, 37(6):883-891.
|
[2] |
Chen Y X, Wu J Q, Huang Q B, et al. Detection of karst leakage passages in sick reservoirs by the self-potential method on the water:An example of the first-class hydropower station on the Jinjihe reservoir[J]. Carsologica Sinica, 2018, 37(6):883-891.
|
[3] |
卢耀如. 岩溶地区主要水利工程地质问题与水库类型及其防渗处理途径[J]. 水文地质工程地质, 1982, 9(4):15-22.
|
[3] |
Lu Y R. Main water conservancy engineering geological problems and the reservoir type in kar-st region and anti-seepage treatment way[J]. Hydrogeology & Engineering Geology, 1982, 9(4):15-22.
|
[4] |
韩凯, 陈玉玲, 陈贻祥, 等. 岩溶病害水库的渗漏通道探测方法——以广西全州县洛潭水库为例[J]. 水力发电学报, 2015, 34(11):116-125.
|
[4] |
Han K, Chen Y L, Chen Y X, et al. Detection method of leakage passages in karst disease reservoirs:A case study of Luotan reservoir in Quanzhou county of Guangxi[J]. Journal of Hydroelectric Engineering, 2015, 34(11):116-125.
|
[5] |
赵瑞, 许模. 水库岩溶渗漏及防渗研究综述[J]. 地下水, 2011, 33(2):20-22.
|
[5] |
Zhao R, Xu M. Summary on reservoir karst seepage and anti-seepage research[J]. Ground Water, 2011, 33(2):20-22.
|
[6] |
彭仕雄, 陈卫东, 肖强. 官地电站库首左岸河湾地块岩溶渗漏分析[J]. 岩石力学与工程学报, 2015, 34(S2):4030-4037.
|
[6] |
Peng S X, Chen W D, Xiao Q. Karst seepage analysis on left river bend in the held area of Guandi hydropower station reservoir[J]. Chinese Journal of Rock Mechanics and Engineering, 2015, 34(S2):4030-4037.
|
[7] |
白云, 袁宝远, 潘玮璠. 南门峡水库渗漏路径地质雷达探测分析[J]. 广西大学学报:自然科学版, 2015, 40(6):1359-1364.
|
[7] |
Bai Y, Yuan B Y, Pan W F. Detection and analysis of seepage path of Nanmenxia reservoir using ground penetrating radar[J]. Journal of Guangxi University:Natural Science Edition, 2015, 40(6):1359-1364.
|
[8] |
陈建生, 李平, 王涛, 等. 青藏高原东缘水库绕坝基渗流化学溶蚀研究[J]. 岩土工程学报, 2019, 41(4):610-616.
|
[8] |
Chen J S, Li P, Wang T, et al. Study on seepage and chemical dissolution of reservoirs around the dam foundation on the eastern margin of the Qinghai-Tibet Plateau[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(4):610-616.
|
[9] |
罗保才, 孙刚, 王世锋. 盘石头水库右岸山体渗漏问题分析与处理[J]. 人民黄河, 2019, 41(3):127-130.
|
[9] |
Luo B C, Sun G, Wang S F. Analysis and treatment of mountain seepage problems on the right bank of Panshitou Reservoir[J]. People's Yellow River, 2019, 41(3):127-130.
|
[10] |
Park M K, Park S, Yi M J, et al. Application of electrical resistivity tomography (ERT) technique to detect underground cavities in a karst area of South Korea[J]. Environmental Earth Sciences, 2014, 71(6):2797-2806.
|
[11] |
王志鹏, 刘江平, 李小彬. 高密度电法对不同溶洞探测效果模拟[J]. 科学技术与工程, 2019, 19(27):74-80.
|
[11] |
Wang Z P, Liu J P, Li X B. Simulation study on detection effect of different karst caves by high density resistivity method[J]. Science Technology and Engineering, 2019, 19(27):74-80.
|
[12] |
雷旭友, 李正文, 折京平. 超高密度电阻率法在土洞、煤窑采空区和岩溶勘探中应用研究[J]. 地球物理学进展, 2009, 24(1):340-347.
|
[12] |
Lei X Y, Li Z W, Zhe J P. Applications and research of the high resolution vesistivity method in caves,mined vegion and explovation of Karst region[J]. Progress in Geophysics, 2009, 24(1):340-347.
|
[13] |
Nouioua A, Rouabhia C, Fehdi M L, et al. The application of GPR and electrical resistivity tomography as useful tools in detection of sinkholes in the Cheria Basin (northeast of Algeria)[J]. Environmental Earth Sciences, 2013, 68(6):1661-1672.
|
[14] |
刘东坤, 魏昶帆, 吴勇, 等. 地质雷达法在桩底岩溶探测中的频谱差异分析[J]. 地下空间与工程学报, 2020, 16(s2):971-975.
|
[14] |
Liu D K, Wei C F, Wu Y, et al. Analysis on the spectrum difference of electromagnetic method for the bottom of the pile in Karst detection project[J]. Chinese Journal of Underground Space and Engineering, 2020, 16(s2):971-975.
|
[15] |
唐宇豪, 魏栋华, 索朗, 等. 地震映像法和地质雷达法在铁路隧底岩溶探测中的应用[J]. 工程地球物理学报, 2021, 18(5):665-670.
|
[15] |
Tang Y H, Wei D H, Suo L, et al. Application of seismic imaging method and ground penetrating radarmethod in karst detection at the bottom of railroad tunnels[J]. Chinese Journal of Engineering Geophysics, 2021, 18(5):665-670.
|
[16] |
Xue G Q, Cheng J L, Zhou N N, et al. Detection and monitoring of water-filled voids using transient electromagnetic method:A case study in Shanxi,China[J]. Environmental Earth Sciences, 2013, 70(5):2263-2270.
|
[17] |
Thomas B, Roth M J S. Evaluation of site characterization methods for sinkholes in Pennsylvania and New Jersey[J]. Engineering Geology, 1999, 52(1):147-152.
|
[18] |
陈玉玲, 韩凯, 陈贻祥, 等. 可控源音频大地电磁法在岩溶塌陷勘察中的应用[J]. 地球物理学进展, 2015, 30(6):2616-2622.
|
[18] |
Chen Y L, Han K, Chen Y X, et al. The application of CSAMT in karst collapse investigation[J]. Progress in Geophysics, 2015, 30(6):2616-2622.
|
[19] |
张虎生, 张为孙. 物探方法在地质灾害中的应用[J]. 中国地质灾害与防治学报, 2003, 14(3):124-127,132.
|
[19] |
Zhang H S, Zhang W S. Application of geophysical exploration method for geological hazard[J]. The Chinese Journal of Geological Hazard and Control, 2003, 14(3):124-127,132.
|
[20] |
郑智杰, 甘伏平, 曾洁. 不同深度岩溶管道的高密度电阻率法反演特征[J]. 中国岩溶, 2015, 34(3):292-297.
|
[20] |
Zheng Z J, Gan F P, Zeng J. Inversiom characteristics of high-density resistivity method on karst conduits at varied depths[J]. Carsologica Sinica, 2015, 34(3):292-297.
|
[21] |
王金海, 才智杰, 苏文俊, 等. 高密度电法在毗卢洞石窟地质病害勘察中的应用[J]. 长江科学院院报, 2015, 32(10):17-22.
|
[21] |
Wang J H, Cai Z J, Su W J, et al. Application of high-density electrical methods to the survey of geo-hazards in Pilu Cave[J]. Journal of Yangtze River Scientific Research Institute, 2015, 32(10):17-22.
|
[22] |
杨天春, 许德根, 张启, 等. 高密度电法在隐伏溶洞勘探中的应用[J]. 中国地质灾害与防治学报, 2016, 27(2):145-148.
|
[22] |
Yang T C, Xu D G, Zhang Q, et al. Application of high density resistivity method in eng-ineering karst exploration[J]. The Chinese Journal of Geological Hazard and Control, 2016, 27(2):145-148.
|
[23] |
董泽义, 汤吉, 周志明. 可控源音频大地电磁法在隐伏活动断裂探测中的应用[J]. 地震地质, 2010, 32(3):442-452.
|
[23] |
Dong Z Y, Tang J, Zhou Z M. Application of CSAMT to buried active faults investigation[J]. Seismology and Geology, 2010, 32(3):442-452.
|
[24] |
甘伏平, 吕勇, 喻立平, 等. 氡气测量与CSAMT联合探测地下地质构造——以滇西潞西地区帕连、法帕剖面探测为例[J]. 地质通报, 2012, 31(s1):389-395.
|
[24] |
Gan F P, Lyu Y, Yu L P, et al. The utilization of combined radon and CSAMT methods to detect underground geological structures:A case study of detection in Palian and Fapa profiles,Luxi area,western Yunnan Province[J]. Geological Bulletinof China, 2012, 31(s1):389-395.
|
[25] |
陈旭乐. 音频大地电磁测深法和高密度电阻率法对隧道岩溶的识别研究与应用[D]. 成都: 成都理工大学, 2017.
|
[25] |
Chen X Y. Recognition research and application of audio-frequency magnetotellurics and high density resistivity method for tunnel Karst[D]. Chengdu: Chengdu University of Technology, 2017.
|
[26] |
叶益信, 杜家明, 薛海军, 等. 高密度电法与音频大地电磁法在城市输水隧洞勘察中的应用[J]. 地球科学与环境学报, 2020, 42(6):767-775.
|
[26] |
Ye Y X, Du J M, Xue H J, et al. Application of multi-electrode resistivity method and audio-frequency magnetotelluric method in the investigation of urban water tunnel[J]. Journal of Earth Sciences and Enviroment, 2020, 42(6):767-775.
|
[27] |
陈松, 庞凯旋, 陈长敬, 等. 基于音频大地电磁测深和高密度电法的城市隐伏断裂联合探测[J]. 工程地球物理学报, 2020, 17(4):470-477.
|
[27] |
Chen S, Pang K X, Chen C J, et al. Joint detection of urban buried faults with audio magnetotelluric sounding and high density resistivity method[J]. Chinese Journal of Engineering Geophysics, 2020, 17(4):470-477.
|
[28] |
欧阳涛, 底青云, 安志国, 等. CSAMT法在某铁路隧道勘察中的应用研究[J]. 地球物理学进展, 2016, 31(3):1351-1357.
|
[28] |
Ouyang T, Di Q Y, An Z G, et al. Application of CSAMT method in railway tunnel investigation[J]. Progress in Geophysics, 2016, 31(3):1351-1357.
|
[29] |
陈松, 余绍文, 刘怀庆, 等. 高密度电法在水文地质调查中的应用研究——以江平圩幅为例[J]. 地球物理学进展, 2017, 32(2):849-855.
|
[29] |
Chen S, Yu S W, Liu H Q, et al. Application and research of high density resistivity method in hydrogeological prospecting:A case study on Jiangping town map[J]. Progress in Geophysics, 2017, 32(2):849-855.
|
[30] |
李帝铨, 底青云, 王光杰, 等. CSAMT探测断层在北京新区规划中的应用[J]. 地球物理学进展, 2008, 23(6):1963-1969.
|
[30] |
Li D Q, Di Q Y, Wang G J, et al. The application of CSAMT fault detection in the planning of Beijing New Area[J]. Progress in Geophysics, 2008, 23(6):1963-1969.
|
[31] |
穆海杰, 王红兵. CSAMT法在南水北调中线采空区探测中的应用[J]. 工程地球物理学报, 2008, 5(3):321-325.
|
[31] |
Mu H J, Wang H B. The application of CSAMT Method in goaf detection in the middle route of South-to-North Water Transfer[J]. Journal of Engineering Geophysics, 2008, 5(3):321-325.
|
[1] |
ZHANG Zhao, YIN Quan-Zeng, ZHANG Long-Fei, ZHANG Da-Ming, ZHANG Shi-Hui, HUANG Guo-Shu, ZHAO Shi-Feng, YANG Biao, TAI Li-Xun, ZHANG Deng-Liang, WANG Jin-Chao, DUAN Gang. Application of the integrated geophysical exploration technology in the exploration of deep carbonate geothermal reservoirs: A case study of the Xiong'an New Area[J]. Geophysical and Geochemical Exploration, 2023, 47(4): 926-935. |
[2] |
YANG Tian-Chun, HU Feng-Ming, YU Xi, FU Guo-Hong, LI Jun, YANG Zhui. Analysis and application of the responses of the frequency selection method of telluric electricity field[J]. Geophysical and Geochemical Exploration, 2023, 47(4): 1010-1017. |
|
|
|
|