|
|
Multiple suppression in the S-transform domain based on the similarity of seismic signals |
ZHANG Hong-Zhi1( ), WANG Da-Long1, ZHANG Chun-Niu1, HAN Jian1, HUANG De-Zhi2, YANG Fei-Long3 |
1. Xinzhuang Coal Mine of Qingyang Xinzhuang Coal Industry Co.,Ltd.,Qingyang 745000,China 2. College of Mineral Engineering,Heilongjiang University of Science and Technology,Haerbin 150022,China 3. School of Earth Science and Engineering,Xi'an Shiyou University,Xi'an 710065,China |
|
|
Abstract Multiple suppression is the key to marine seismic data processing.Efficient and accurate identification and suppression of multiples while protecting primary reflected waves is the focus of seismic data processing.This study carried out the multiple suppression in the S-transform domain using the CMP stacking based on the similarity of seismic signals between the common midpoint (CMP) gather and the stack trace.First,the initial multiple subtraction was completed through the normal moveout (NMO) correction of multiple velocity and subtracting the stack trace data from the CMP gather data.As a result,the residual multiples in the wave field exist in the form of random noise.Then,the NMO correction was conducted for the velocity of primary reflected waves of the seismic wave field, for which multiples were subtracted.Afterward,the similarity filtering was conducted for the S-transform spectra of the CMP gather,with the stack trace of the primary reflected wave velocity as the initial model.In this way,the residual multiples were eliminated.The validity tests based on both the theoretical data and the actual data show that the method proposed in this study can efficiently suppress multiples and improve the imaging precision of reflected waves.
|
Received: 06 December 2021
Published: 24 February 2023
|
|
|
|
|
|
The diagram of reflected wave in CMP gather in horizontal layer a—the ray path of reflected wave;b—the time and spatial distribution of reflected wave in CMP gather;c—the time and spatial distribution of reflected wave in CMP gather after NMO
|
|
The diagram of reflected wave in CMP gather in inclined layer a—the ray path of reflected wave;b—the time and spatial distribution of reflected wave in CMP gather;c—the time and spatial distribution of reflected wave in CMP gather after NMO
|
figure 3a ">
|
The wave field characteristics and S-transform spectrum of seismic traces in CMP gather and stack trace a—CMP gather after NMO;b—stack trace;c—S-transform spectrum of stack trace;d—S-transform spectrum of 34th trace in figure 3a
|
|
The algorithm flow chart
|
|
Geological model
|
层位 | 纵波速度/(m·s-1) | 地层厚度/m | 1 | 1600 | 400 | 2 | 2000 | 400 | 3 | 2300 | 400 | 4 | 2700 | 400 | 5 | 3100 | 400 | 6 | 4000 | 1000 |
|
Geological model parameters
|
| 炮点参数 | | 检波点参数 | 总炮数 | 240 | 每炮道数 | 280 | 炮间距/m | 20 | 道间距/m | 10 | 最小偏移距/m | 0 | 最大偏移距/m | 1400 | 首炮坐标 | x/m | z/m | 首道坐标 | x/m | z/m | 1400 | 0 | 0 | 0 |
|
Geometry parameters
|
|
The process of multiple suppression a—CMP gather after NMO by primary wave velocity;b—CMP gather after NMO by multiple wave velocity;c—CMP gather of NMO by multiple wave velocity minus stack trace;d—stack trace;e—CMP gather by primary wave velocity NMO after multiple suppression
|
|
The S-transform spectrum a—the 140th trace in 500 CMP of NMO by multiple wave velocity minus stack trace;b—stack trace
|
|
The result of stack imaging before(a) and after(b) multiple suppression
|
|
The velocity spectrum within multiples a—velocity spectrum;b—super gathers
|
|
The process of multiple suppression a—CMP gather after NMO by primary wave velocity;b—CMP gather after NMO by multiple wave velocity;c—CMP gather of NMO by multiple wave velocity minus stack trace;d—stack trace;e—CMP gather after multiple suppression
|
|
The S-transform spectrum a—the 35th trace in 5 240 CMP of NMO by multiple wave velocity minus stack trace;b—stack trace
|
|
The result of stack imaging before(a) and after(b) multiple suppression
|
[1] |
Ryu J V. Decomposition (DECOM) approach applied to wavefield analysis with seismic reflection records[J]. Geophysics, 1982, 47(6):869-883.
|
[2] |
Zhou B, Greenhalgh S A. Wave-equation extrapolation-based multiple attenuation:2-D filtering in the f-k domain[J]. Geophysics, 1994, 59(9):1377-1391.
|
[3] |
March D W. Interpretation of the K-L transform and its optimum application in the suppression of multiple in prestack seismic data[C]// The 50th Annual Meeting of the EAGE in Hague,1988.
|
[4] |
Hampson D. Inverse velocity stacking for multiple elimination[C]// The 56th SEG Technical Program Expanded Abstracts, 1986:422-424.
|
[5] |
Herrmann P, Mojesky T, Mageson M, et al. Deabased high-resolution Radon transforms[C]// The 70th SEG Technical Program Expanded Abstracts, 2000:1953-1956.
|
[6] |
熊登, 赵伟, 张剑锋, 等. 混合域高分辨率抛物Radon变换及其在衰减多次波中的应用[J]. 地球物理学报, 2009, 52(4):1068-1077.
|
[6] |
Xiong D, Zhao W, Zhang J F, et al. Mixed domain high resolution parabolic Radon transform and its application in attenuation multiples[J]. Geophysical Journal, 2009, 52(4):1068-1077.
|
[7] |
White R E. A Multichannel method of multiple attenuation based on hyperbolic moveout curves[C]// The 50th Annual Meeting of the EAGE in Hague, 1988:1-22.
|
[8] |
胡天跃, 王润秋, 温书亮, 等. 聚束滤波法消除海上地震资料的多次波[J]. 石油地球物理勘探, 2002, 37(1):18-23.
|
[8] |
Hu T Y, Wang R Q, Wen S L, et al. Elimination of multiples from marine seismic data by cluster filtering[J]. Oil Geophysical Prospecting, 2002, 37(1):18-23.
|
[9] |
张广利, 郝重铸, 姚陈, 等. 海洋地震资料多次波衰减方法综述[J]. 地球物理学进展, 2016, 31(6):2777-2787.
|
[9] |
Zhang G L, Hao C Z, Yao C, et al. A review of multiple wave attenuation methods for marine seismic data[J]. Geophysical in Progress, 2016, 31(6):2777-2787.
|
[10] |
马继涛, 廖震, 齐娇, 等. 基于迭代阈值收缩的高分辨率Radon变换方法效果对比[J]. 物探与化探, 2021, 45(2):413-422.
|
[10] |
Ma J T, Liao Z, Qi J, et al. The comparison of effects of high-resolution Radon transform based on iterative shrinkage thresholding[J]. Geophysical and Geochemical Exploration, 2021, 45(2):413-422.
|
[11] |
黄德智. 基于反射波信号相似性的地震波场分离方法研究[D]. 长春: 吉林大学, 2021.
|
[11] |
Huang D Z. Research on seismic wave field separation method based on reflection wave signal similarity[D]. Changchun: Jilin University, 2021.
|
[12] |
Robinson E A, Treitel S. Principles of digital Wiener filtering[J]. Geophysical Prospecting, 1967, 15(3):311-332.
|
[13] |
谭军. 自由界面多次波的预测与衰减[D]. 青岛: 中国海洋大学, 2011.
|
[13] |
Tan J. Prediction and attenuation of free-interface multiple waves[D]. Qingdao: Ocean University of China, 2011.
|
[14] |
张晴, 郭平, 高源, 等. 利用变步长预测反褶积方法压制沙丘鸣震[J]. 石油地球物理勘探: 2018, 53(S1):51-55.
|
[14] |
Zhang Q, Guo P, Gao Y, et al., Suppressing sand dune strikes using variable step predictive deconvolution[J]. Oil Geophysical Prospecting: 2018, 53(S1):51-55.
|
[15] |
王龙辉. 高阻抗矿层下多次波压制技术研究[J]. 中国金属通报, 2018(11):138-140.
|
[15] |
Wang L H. Research on multiple suppression technology under high impedance ore layer[J]. China Metals Circular, 2018(11):138-140.
|
[16] |
Loewenthal D, Lu L, Roberson R, et al. The wave equation applied to migration and water bottom multiples[C]// The 44th SEG Technical Program Expanded Abstracts,1974.
|
[17] |
Wiggins J W. Attenuation of complex water-bottom multiples by wave-equation-based predication and substraction[J]. Geophysics, 1988, 53(12):1527-1539.
|
[18] |
张广利. 海洋倾斜界面多次波与鬼波数值模拟研究[D]. 北京: 中国地震局地质研究所, 2004.
|
[18] |
Zhang G L. Multiple wave and ghost wave numerical simulation of ocean inclined interface[D]. Beijing: Geological Institute of China Earthquake Administration, 2004.
|
[19] |
Berkhout A J. Seismic migration:Imaging of acoustic energy by wave field extrapolation[M]. Elsevier Scientific Pub. Com., 1982:2039-2041.
|
[20] |
Baumstein A, Hadidi M T. 3D surface-related multiple elimination date reconstruction and application to field data[J]. Geophysics, 2006, 71(3):25-33.
|
[21] |
刘华锋. 逆散射级数法衰减海上多次波[D]. 北京: 中国石油大学(北京), 2011.
|
[21] |
Liu H F. Inverse scattering series method attenuation sea multiples[D]. Beijing: China University of Petroleum(Beijing), 2011.
|
[22] |
李振春, 刘建辉, 郭朝斌, 等. 基于扩展伪多道匹配的保幅型多次波压制法[J] .石油地球物理勘探, 2011, 46(2):207-210.
|
[22] |
Li Z C, Liu J H, Guo C B, et al. Amplitude-preserving multiple suppression method based on extended pseudo multichannel matching[J]. Oil Geophysical Prospecting, 2011, 46(2):207-210.
|
[23] |
刘伊克, 朱伟林, 米立军, 等. 南海北部陆坡区多次波发育特征及压制策略分析[J]. 地球物理学报, 2014, 57(10):3354-3362.
|
[23] |
Liu Y K, Zhu W L, Mi L J, et al. Strategies of multiples in the northern slope of the South China Sea[J]. Chinese Geophysical Journal, 2014, 57(10):3354-3362.
|
[24] |
刘俊, 吴淑玉, 高金耀, 等. 南黄海中部浅水区多次波衰减技术及其效果分析[J]. 物探与化探, 2016, 40(3):568-577.
|
[24] |
Liu J, Wu S Y, Gao J Y, et al. An effectiveness analysis of multiple depression technique in the Shallow water of the central uplift in South Yellow Sea[J]. Geophysical and Geochemical Exploration, 2016, 40(3):568-577.
|
[25] |
何林帮, 赵建虎, 吴晓良, 等. 双曲Radon域预测反褶积和反馈循环的多次波压制综合方法[J]. 中国矿业大学学报, 2018, 47(2):451-458.
|
[25] |
He L B, Zhao J H, Wu X L, et al. Multiple suppression method for predicting deconvolution and feedback loop in hyperbolic Radon domain[J]. Journal of China University of Mining and Technology, 2018, 47(2):451-458.
|
[1] |
DU Yi-Jing, SUN Cheng-Yu, WANG Zhi-Nong, CAI Rui-Qian, WANG Sheng-Rong, JIAO Jun-Feng. Effects of seawater layer on seismic reflection characteristics[J]. Geophysical and Geochemical Exploration, 2023, 47(3): 757-765. |
[2] |
CUI Ya-Tong, WANG Sheng-Hou, CAI Zhong-Xian. Seismic random noise attenuation method based on the fast adaptive non-local means filtering algorithm[J]. Geophysical and Geochemical Exploration, 2022, 46(5): 1187-1195. |
|
|
|
|