|
|
Application of the activated charcoal radon measurement in the geothermal exploration:A study of the Zhangye-Minle basin |
LIANG Yu-Dong1( ), REN Kang-Hui2, JIANG Xin1, DING Bao-Yan1, TONG Pin-Xian1, HU Pei-Qing2( ) |
1. The Third Institute of Geology and Minerals Exploration, Gansu Provincial Bureau of Geology and Minerals Exploration and Development, Lanzhou 730050, China 2. School of Earth Sciences, Lanzhou University, Lanzhou 730000, China |
|
|
Abstract Geothermal energy mainly migrates and accumulates along fractured zones. Ascertaining the faults in the study area is an important goal of geothermal exploration. Many faults are distributed in the Zhangye-Minle basin. They are deeply buried and are difficult to find on the surface. The special geological conditions make it difficult to fully utilize the advantages of conventional geophysical methods. By contrast, the activated charcoal radon measurement features strong anti-interference, large detection depth, and low cost, which are unique advantages in detecting concealed structures. This study investigated the concealed structures in the Zhangye-Minle basin using the activated charcoal radon measurement. Through the trend analysis of measured radon concentrations, this study extracted local anomalies and determined the favorable parts for the geothermal water exploration in the study area, creating conditions for further drilling and shallow artificial seismic exploration.
|
Received: 09 September 2021
Published: 03 January 2023
|
|
Corresponding Authors:
HU Pei-Qing
E-mail: 273263558@qq.com;hupq@lzu.edu.cn
|
|
|
|
|
Regional structure(a) and profile (b) of Zhangye-Minle basin 1—middle and lower Pleistocene; 2—upper Pleistocene; 3—Holocene; 4—Neogene; 5—Paleogene; 6—Permian; 7—Carboniferous; 8—Sinian; 9—granite; 10—measured faults; 11—concealed fault; 12—drill hole ZK1
|
|
Layout plan of activated carbon adsorption radon measurement method in Zhangye-Minle basin 1—geothermal well ZK1; 2—radon measurement lines; 3—test lines; 4—liuba normal fault
|
|
Profile of radon value measured by activated carbon adsorption method
|
|
Surface radon anomalies in the study area 1—geothermal well ZK1; 2—Liuba normal fault; 3—inferred fault; 4—radon isoline; 5—radon measurement line; 6—inferred geothermal source borehole
|
[1] |
王天才, 熊英举. AMT-CSAMT两种方法在石阡县中坝地热勘查中的应用[J]. 西部资源, 2020, 106(2):89-90,93.
|
[1] |
Wang T C, Xiong Y J. Application of two methods of AMT-CSAMT in geothermal exploration in Zhongba, Shiqian County[J]. Western Resources, 2020, 106(2):89-90,93.
|
[2] |
侯玉新, 慕秀琴. 神堂沟地热田形成与地质构造的关系[J]. 中国煤田地质, 2004, 16(6):25-26,38.
|
[2] |
Hou Y X, Mu X Q. The relationship between the formation of Shentangou geothermal field and geological structure[J]. China Coalfield Geology, 2004, 16(6):25-26,38.
|
[3] |
Wang Y J, Ma F, Xie H P, et al. Fracture characteristics and heat accumulation of Jixianian carbonate reservoirs in the Rongcheng geothermal field, Xiong'an New Area[J]. Acta Geologica Sinica, 2021, 95(6):1902-1914.
|
[4] |
刘明辉, 薛建, 王者江, 等. 工程场地隐伏断裂的探测与地震活动性评价[J]. 物探与化探, 2018, 42(4):839-845.
|
[4] |
Liu M H, Xue J, Wang Z J, et al. Detection and seismic activity evaluation of hidden fractures in engineering sites[J]. Geophysical and Geochemical Exploration, 2018, 42(4):839-845.
|
[5] |
宋启文, 张醒. 地热资源勘查中的综合物探方法研究[J]. 冶金与材料, 2019, 39(4):36-37.
|
[5] |
Song Q W, Zhang X. Research on integrated physical prospecting methods in geothermal resource exploration[J]. Metallurgy and Materials, 2019, 39(4):36-37.
|
[6] |
郭鹏文, 王飞. 土壤氡气测量在调查矿山断裂中的应用[J]. 世界有色金属, 2021(6):153-154.
|
[6] |
Guo P W, Wang F. Application of soil radon gas measurement in the investigation of mine fractures[J]. World Nonferrous Metals, 2021(6):153-154.
|
[7] |
张晗, 卢玮, 黄烜, 等. 综合地球物理方法在范县地热勘查中对比试验研究[J]. 地质装备, 2021, 22(4):15-23.
|
[7] |
Zhang H, Lu W, Huang X, et al. Comparative experimental study of integrated geophysical methods in geothermal exploration in Fan County[J]. Geological Equipment, 2021, 22(4):15-23.
|
[8] |
Zhang X J, Zhang H Y, Cao Z Y. Genetic analysis and resource evaluation of Dazhuang geothermal reservoir in the Minle Basin[J]. Arabian Journal of Geosciences, 2021, 14(9):1-13.
|
[9] |
林长城, 丁文龙, 丛森, 等. 甘肃民乐盆地构造特征分析[J]. 煤炭技术, 2018, 37(8):106-108.
|
[9] |
Lin C C, Ding W L, Cong S, et al. Analysis of tectonic features in the Minle Basin, Gansu[J]. Coal Technology, 2018, 37(8):106-108.
|
[10] |
尹政, 柳永刚, 张旭儒, 等. 张掖—民乐盆地中新生界地层结构及对地热的控制作用[J]. 甘肃地质, 2021, 30(3):49-56.
|
[10] |
Yin Z, Liu Y G, Zhang X R, et al. Stratigraphic structure and control of geothermal heat in the middle Cenozoic of the Zhangye-Minle Basin[J]. Geology of Gansu, 2021, 30(3):49-56.
|
[11] |
李彩霞, 李永恒, 童品贤. 民乐县生态园地热流体化学特征评价[J]. 资源信息与工程, 2021, 36(2):33-35.
|
[11] |
Li C X, Li Y H, Tong P X. Evaluation of geothermal fluid chemistry characteristics of Minle County Ecological Park[J]. Resource Information and Engineering, 2021, 36(2):33-35.
|
[12] |
俞兆虎, 滕汉仁, 李百祥. 张掖—民乐盆地地质—地球物理信息揭示的地热资源前景与勘查方法优化组合[J]. 甘肃地质, 2018, 27(s1):79-84.
|
[12] |
Yu Z H, Teng H R, Li B X. Prospective geothermal resources revealed by geological-geophysical information in Zhangye-Minle basin and optimal combination of exploration methods[J]. Gansu Geology, 2018, 27(s1):79-84.
|
[13] |
张浩宇. 综合物探法在甘肃省民乐县地热资源勘探中的应用[D]. 太原: 太原理工大学, 2021.
|
[13] |
Zhang H Y. Application of integrated physical prospecting method in geothermal resource exploration in Minle County, Gansu Province[D]. Taiyuan: Taiyuan University of Technology, 2021.
|
[14] |
王具文, 张旭儒, 宁天祥, 等. 张掖盆地地热资源地质特征分析与研究[J]. 地下水, 2019, 41(3):5-6,27.
|
[14] |
Wang J W, Zhang X R, Ning T X, et al. Geological characteristics of geothermal resources in the Zhangye Basin[J]. Groundwater, 2019, 41(3):5-6,27.
|
[15] |
韦祖宁. 民乐盆地地热水特征及成因[D]. 兰州: 兰州大学, 2021.
|
[15] |
Wei Z N. Characteristics and genesis of geothermal water in the Minle Basin[D]. Lanzhou: Lanzhou University, 2021.
|
[16] |
李俊, 王亚璐, 齐志龙. 氡气、气汞测量在地热田断裂研究中的应用[J]. 新疆地质, 2017, 35(s1):166-171.
|
[16] |
Li J, Wang Y L, Qi Z L. Application of radon and gas-mercury measurements in geothermal field fracture studies[J]. Xinjiang Geology, 2017, 35(s1):166-171.
|
[17] |
陈希泉, 陈颉, 罗先熔, 等. 地气(氡气)测量方法寻找隐伏含矿断裂试验[J]. 物探与化探, 2011, 35(6):817-820.
|
[17] |
Chen X Q, Chen J, Luo X R, et al. The tentative application of the geogas (radon) measuring method to the prospecting for concealed ore-bearing fractures[J]. Geophysical and Geochemical Exploration, 2011, 35(6):817-820.
|
[18] |
郎文霞, 刘鸿福. 活性炭测氡法在活断层探测中的应用[J]. 山西煤炭, 2012, 32(5):67-68.
|
[18] |
Lang W X, Liu H F. Application of activated carbon radon measurement method in active fault detection[J]. Shanxi Coal, 2012, 32(5):67-68.
|
[19] |
丁保艳, 梁雨东, 童品贤, 等. 活性炭测氡法在张掖-民乐盆地隐伏断层测量中实验条件研究[J]. 甘肃地质, 2021, 30(4):75-79.
|
[19] |
Ding B Y, Liang Y D, Tong P X, et al. Experimental study on radon measurement with activated carbon in concealed faults of Zhangye-Minle Basin[J]. Gansu geology, 2021, 30(4):75-79.
|
[1] |
XUE Dong-Xu, LIU Cheng, GUO Fa, WANG Jun, XU Duo-Xun, YANG Sheng-Fei, ZHANG Pei. Predicting the geothermal resources of the Tangyu geothermal field in Meixian County, Shaanxi Province, based on soil radon measurement and the controlled source audio magnetotelluric method[J]. Geophysical and Geochemical Exploration, 2023, 47(5): 1169-1178. |
[2] |
SUN Hai-Chuan. Geothermal geological conditions of the Western Dinosaur Park block in the Lanzhou New area[J]. Geophysical and Geochemical Exploration, 2022, 46(6): 1411-1418. |
|
|
|
|