|
|
An ISCCP algorithm for geomagnetic gradient matching for navigation |
JIN Zi-Xiang1( ), XU Su-Peng1, ZHANG Gui-Bin1( ), LIANG Jian1, Dong Gen-Wang2, FAN Zhen-Yu1 |
1. School of Geophysics and Information Technology, China University of Geosciences(Beijing), Beijing 100083, China 2. Geophysical Exploration Academy of China Metallurgical Geology Bureau, Baoding 071051, China |
|
|
Abstract The iterated closest contour point (ICCP) algorithm results in large matching errors and even false matching in areas with small geomagnetic variations. Given this, this study established an error model for the ICCP algorithm in order to determine the causes of the large matching errors in the areas. Based on this model, this study proposed an iterated search closest contour point (ISCCP) algorithm suitable for geomagnetic gradient matching for navigation. In the proposed algorithm, the closest point search method was improved based on the ICCP, and an iterative search was performed using the geomagnetic gradient information of three orthogonal directions. The simulation results show that the average point error of the ISCCP algorithm can be controlled within half a grid length, with a precision about 15 times higher than that of the ICCP algorithm. Therefore, the ISCCP algorithm proposed in this study can effectively eliminate the large matching errors in areas with small geomagnetic variations caused by the ICCP algorithm.
|
Received: 19 October 2021
Published: 03 January 2023
|
|
Corresponding Authors:
ZHANG Gui-Bin
E-mail: jin_zixiang@163.com;gbzhang@cugb.edu.cn
|
|
|
|
|
ICCP matching process
|
|
ICCP error analysis
|
|
ISCCP matching process
|
|
ISCCP error analysis
|
|
Total geomagnetic field and geomagnetic gradient
|
| 参数描述 | 参数值 | 惯导系统误差 | 陀螺常值偏零 | 0.5 °/h | 角度随机游走 | 0.01 °/ | 加速度常值偏值 | 150 μg | 速度随机游走 | 10 μg/ | 匹配过程 | 航行速度 | 10 m·s-1 | 采样点数 | 72 | 每次匹配点数 | 3 | 采样点间隔时间 | 8 s | 初始惯导误差 | 100 m |
|
Simulation parameters
|
|
Linear track matching results
|
|
Linear track matching error
|
|
Curve track matching results
|
|
Curve track matching error
|
|
Local matching results
|
[1] |
陈国雄, 刘天佑, 冯杰. 考虑日变影响的小尺度地磁无源导航方法[J]. 物探与化探, 2010, 34(5):590-594.
|
[1] |
Chen G X, Liu T Y, Feng J. Fine-scale passive magnetic navigation in consideration of the influence of geomagnetic diurnal change[J]. Geophysical and Geochemical Exploration, 34(5):590-594.
|
[2] |
周能兵, 王亚斌, 王强. 地磁导航技术研究进展综述[J]. 导航定位学报, 2018, 6(2): 15-19.
|
[2] |
Zhou N B, Wang Y B, Wang Q. A brief review of geomagnetic navigation technology[J]. Journal of Navigation and Positioning, 2018, 6(2):15-19.
|
[3] |
踪华, 刘嬿, 杨业. 地磁导航技术研究现状综述[J]. 航天控制, 2018, 36(3):93-98.
|
[3] |
Zong H, Liu Y, Yang Y. Overview of the research status about geomagnetic navigation technology[J]. Aerospace Control, 2018, 36(3):93-98.
|
[4] |
王立辉, 刘庆雅. 飞行器编队PSO多维地磁匹配算法[J]. 电光与控制, 2021, 28(3): 41-45.
|
[4] |
Wang L H, Liu Q Y. Multi-dimensional PSO gomagnetic matching algorithm for aircraft formation[J]. Electronics Optics & Control, 2021, 28(3):41-45.
|
[5] |
吴凤贺, 张琦, 潘孟春, 等. 基于ICCP的地磁矢量匹配算法研究[J]. 中国测试, 2018, 44(2):103-107.
|
[5] |
Wu F H, Zhang Q, Pan M C, et al. Research on geomagnetic vector matching algorithm based on ICCP[J]. China Test, 2018, 44(2):103-107.
|
[6] |
Sun Y, Zhang J S, Qiao Y K, et al. Matching area intelligent selection method in geomagnetic navigation[C]// 2010 IEEE International Conference on Intelligent Computing and Intelligent Systems, 2010.
|
[7] |
Xu Y, Guan G F, Song Q W, et al. Heuristic and random search algorithm in optimization of route planning for robot’s geomagnetic navigation[J]. Computer Communications, 2020, 154:12-17.
|
[8] |
西永在, 路宁, 张兰, 等. 基于无人直升机平台的航磁系统集成与应用[J]. 物探与化探, 2019, 43(1):125-131.
|
[8] |
Xi Y Z, Lu N, Zhang L, et al. Integration and application of an aeromagnetic survey system based on unmanned helicopter platform[J]. Geophysical and Geochemical Exploration, 2019, 43(1):125-131.
|
[9] |
梁建, 庄道泽, 郭玉峰, 等. 利用航磁重复线测量内符合精度消除航磁梯度测量中的转向差[J]. 物探与化探, 2018, 42(3):576-582.
|
[9] |
Liang J, Zhuang D Z, Guo Y F, et al. Elimination of steering difference in aeromagnetic gradient measurement using internal accord accuracy for test repeat line in aeromagnetic survey[J]. Geophysical and Geochemical Exploration, 2018, 42(3): 576-582.
|
[10] |
Song Z G, Zhang J S, Zhu W Q, et al. The vector matching method in geomagnetic aiding navigation[J]. Sensors, 2016, 16(7):1120.
|
[11] |
Chen Z, Zhang Q, Pan M C, et al. A new geomagnetic matching navigation method based on multidimensional vector elements of Earth’s magnetic field[J]. IEEE Geoscience and Remote Sensing Letters, 2018, 15(8):1289-1293.
|
[12] |
王琼, 王晓宇, 苏文博. 基于遗传算法的地磁平缓区域导航算法[J]. 现代导航, 2020, 11(5):313-317,328.
|
[12] |
Wang Q, Wang X Y, Su W B. Geomagnetic matching method based on genetic algorithm in areas with smooth magnetic features[J]. Modern Navigation, 2020, 11(5):313-317,328.
|
[13] |
李鑫, 程德福, 周志坚. 一种基于地磁总场梯度的匹配定位算法[J]. 传感技术学报, 2017, 30(12):1869-1875.
|
[13] |
Li X, Chen D F, Zhou Z J. A matching algorithm based on the gradient of the total geomagnetic[J]. Journal of Transduction Technology, 2017, 30(12):1869-1875.
|
[14] |
余志超. 基于多特征量的地磁匹配算法及应用[D]. 哈尔滨: 哈尔滨工业大学, 2019.
|
[14] |
Yu Z C. Geomagnetic matching algorithm and application based on multi feature quantity[D]. Harbin:Harbin University of Technology, 2019.
|
[15] |
赵建虎, 张红梅, 王爱学, 等. 利用ICCP的水下地磁匹配导航算法[J]. 武汉大学学报:信息科学版, 2010, 35(3):261-264.
|
[15] |
Zhao J H, Zhang H M, Wang A X, et al. Underwater geomagnetic navigation based on ICCP[J]. Journal of Wuhan University: Information Science Edition, 2010, 35(3):261-264.
|
[16] |
张晓峻. 水下机器人地磁辅助导航算法研究[D]. 哈尔滨: 哈尔滨工程大学, 2016.
|
[16] |
Zhang X J. Research on algorithms of geomagnetic aided navigation for remote operated vehicle[D]. Harbin:Harbin Engineering University, 2016.
|
[17] |
王向磊, 苏牡丹, 刘培根, 等. 利用改进的ICCP算法辅助导航[J]. 测绘科学, 2013, 38(1):36-39,50.
|
[17] |
Wang X L, Su M D, Liu P G, et al. Application of improved ICCP algorithm in gravity matching aided navigation[J]. Science of Surveying and Mapping, 2013, 38(1):36-39,50.
|
[18] |
严恭敏, 翁浚. 捷联导航算法与组合导航原理[M]. 西安: 西北工业大学, 2019.
|
[18] |
Yan G M, Weng J. Strapdown navigation algorithm and integrated navigation principle[M]. Xi'an: Northwestern Polytechnical University, 2019.
|
|
|
|