|
|
2D seismic and high-density resistivity sounding reveal the shallow three-dimensional geological structure characteristics of Xiong'an New Area |
LONG Hui( ), XIE Xing-Long, LI Feng-Zhe( ), REN Zheng-Wei, WANG Chun-Hui, GUO Shu-Jun |
Center for Hydrogeology and Environmental Geology Survey,China Geology Survey,Baoding 071051,China |
|
|
Abstract The Xiong'an New Area is located in the middle part of the Jizhong Plain.The Cenozoic strata in the underground structure of the area have a large thickness,good stratification,and relatively stable tectonic activities.To finely determine the shallow geological structures,ascertain the fault structure characteristics,and improve the shallow exploration accuracy,this study combined two-dimensional seismic surveys and high-density resistivity sounding and made the following important progress.①This study finely determined the geological structure and the spatial distribution characteristics of fault structures at a depth of less than 200 m in the Xiong'an New Area;②This study constructed a three-dimensional visualized geological structure model,which intuitively displays the stratigraphic fluctuation pattern of Cenozoic strata and the spatial distribution of main fault structures;③This study analyzed and summarized the application of geophysical methods under the background of urbanization-induced high disturbance,including their exploration depths,horizontal and vertical resolution,response characteristics of geological bodies,and applicability.This study effectively supports and serves the planning,construction,and underground-space development and utilization in the Xiong'an New Area and serves as a reference for the geophysical exploration of urban underground space in hugely thick sedimentary basins.
|
Received: 11 June 2021
Published: 17 August 2022
|
|
Corresponding Authors:
LI Feng-Zhe
E-mail: longlong19870402@163.com;li_fz@163.com
|
|
|
|
|
The seismic time profile of R2-1 in the study area
|
|
Distribution map of main stratigraphic sequences in the study area
|
|
Distribution map of fault structure in the study area
|
|
Inversion profile of high-density resistivity sounding of Xiongan New Area
|
|
Graph of groundwater salinity and apparent resistivity
|
|
The 0~200 m 3D visual geological model of the study area
|
|
Buried depth map of the Quaternary bottom in the study area
|
物探方法 | 探测深度 | 探测精度 | 解决地质问题 | 二维地震 | 30~2500 m | 横向分辨率:取决于道间距,1、2.5、5 m。 纵向分辨率:深度不同垂向分辨率不同: ①30~200 m:分辨率3~5 m,可识别测井视电阻率大于35 Ω·m的厚度不小于4 m的中细—中粗砂层; ②200~600 m:分辨率5~10 m; ③600~2 500 m,分辨率10~30 m。 | ①划分砂层和粉质黏土层,刻画地层结构,识别“隆—凹”格局; ②查明断裂构造分布规律及空间展布特征; ③确定2500 m以浅地热储层埋藏深度、厚度和其他地质信息; ④为工程地质孔连孔提供空间层位信息和约束。 | 高密度电阻率测深 | 0~150 m | 横向分辨率取决于点距,一般认为是点距的二分之一:2.5、5 m。 纵向分辨率:深度不同垂向分辨率不同: ①0~50 m:分辨率5~8 m; ②50~120 m:分辨率8~15 m; ③120~150 m:分辨率15~22 m。 | ①识别浅部地层岩性,建立岩—电关系结构,刻画地层特征; ②了解地下水分布特征; ③为工程钻孔间地层连接和古河道砂体分布提供依据。 |
|
Applicability analysis of geophysical methods in Xiong'an New Area
|
[1] |
孙冬胜, 刘池阳, 杨明慧, 等. 渤海湾盆地冀中坳陷中区中新生代复合伸展构造[J]. 地质论评, 2004, 50(5):484-491.
|
[1] |
Sun D S, Liu C Y, Yang M H, et al. Study on complex extensional structures in the middle Jizhong depression in the Bohai bay basin[J]. Geological Review, 2004, 50(5):484-491.
|
[2] |
于长春, 乔日新, 张迪硕. 雄安新区航磁推断的三维基底构造特征[J]. 物探与化探, 2017, 41(3):385-391.
|
[2] |
Yu C C, Qiao R X, Zhang D S. The basement tectonic characteristics from interpretation of aeromagnetic data in Xiong'an region[J]. Geophysical and Geochemical Exploration, 2017, 41(3):385-391.
|
[3] |
杨百存, 秦四清, 薛雷, 等. 雄安新区地震危险性评估[J]. 地球物理学报, 2017, 60(12):4644-4654.
|
[3] |
Yang B C, Qin S Q, Xue L, et al. Seismic hazard assessment in the Xiongan New Area[J]. Chinese Journal of Geophysics, 2017, 60(12):4644-4654.
|
[4] |
何登发, 单帅强, 张煜颖, 等. 雄安新区的三维地质结构:来自反射地震资料的约束[J]. 中国科学, 2018, 48(9):1207-1222.
|
[4] |
He D F, Shan S Q, Zhang Y Y, et al. 3-D geologic architecture of Xiongan New Area: Constraints from seismic reflection data[J]. Science China, 2018, 48(9):1207-1222.
|
[5] |
佘雅文, 付广裕, 高原, 等. 华北地区中东部岩石圈挠曲与均衡特性以及地震活动性分析[J]. 地球物理学报, 2018, 61(11):4448-4458.
|
[5] |
She Y W, Fu G Y, Gao Y, et al. Flexure of the lithosphere,isostatic characteristic and seismicity in middle east area of North China[J]. Chinese Journal of Geophysics, 2018, 61(11):4448-4458.
|
[6] |
商世杰, 丰成君, 谭成轩, 等. 雄安新区附近主要隐伏断裂第四纪活动性研究[J]. 地球学报, 2019, 40(6):836-846.
|
[6] |
Shang S J, Feng C J, Tan C X, et al. Quaternary activity study of major buried faults near Xiongan New Area[J]. Acta Geoscientica Sinica, 2019, 40(6):836-846.
|
[7] |
邓起东. 城市活动断裂探测和地震危险性评价问题[J]. 地震地质, 2002, 24(4):601-605.
|
[7] |
Deng Q D. Exploration and seismic hazard assessment of active faults in urban areas[J]. Seismology and Geology, 2002, 24(4):601-605.
|
[8] |
张迪, 吴中海, 李家存, 等. 综合多频率地质雷达天线探测活断层浅层结构——以玉树活动断裂为例[J]. 地质力学学报, 2019, 25(6):1138-1149.
|
[8] |
Zhang D, Wu Z H, Li J C, et al. The application of multi-frequency GPR antenna for imaging the shallow subsurface features in the Yushu active fault[J]. Journal of Geomechanics, 2019, 25(6):1138-1149.
|
[9] |
赵镨, 姜杰, 王秀荣. 城市地下空间探测关键技术及发展趋势[J]. 中国煤炭地质, 2017, 29(9):61-66.
|
[9] |
Zhao P, Jiang J, Wang X R. Urban underground space exploration key technologies and development trend[J]. Coal Geology of China, 2017, 29(9):61-66.
|
[10] |
刘永生, 龙桃城, 刘仁义. 瞬变电磁法在城市地质调查应用中有关问题的探讨[J]. 岩土工程技术, 2019, 33(3):173-177.
|
[10] |
Liu Y S, Long T C, Liu R Y. Discussion on relevant problems in application of TEM in urban geological survey[J]. Geotechnical Engineering Technique, 2019, 33(3):173-177.
|
[11] |
张保卫, 张凯, 岳航羽, 等. 江苏滩涂区浅层地震探测方法技术应用[J]. 物探与化探, 2018, 42(1):144-153.
|
[11] |
Zhang B W, Zhang K, Yue H Y, et al. Application of shallow seismic exploration method in Tidal-flat region of Jiangsu Province[J]. Geophysical and Geochemical Exploration, 2018, 42(1):144-153.
|
[12] |
张晓波, 王成善, 王志辉, 等. 广东省潼湖生态智慧区浅层地球物理探测与地层物性分析[J]. 地质学报, 2019, 93(11):2935-2946.
|
[12] |
Zhang X B, Wang C S, Wang Z H, et al. Shallow geophysical exploration and stratigraphic properties analysis of the Tonghu ecological smart zone,Guangdong Province[J]. Acta Geologica Sinica, 2019, 93(11):2935-2946.
|
[13] |
王朱亭, 张超, 姜光政, 等. 雄安新区现今地温场特征及成因机制[J]. 地球物理学报, 2019, 62(11):4313-4322.
|
[13] |
Wang Z T, Zhang C, Jiang G Z, et al. Present-day geothermal field of Xiongan New Area and its heat source mechanism[J]. Chinese Journal of Geophysics, 2019, 62(11):4313-4322.
|
[14] |
万天丰. 中国大地构造学[M]. 北京: 地质出版社, 2011.
|
[14] |
Wan T F. The tectonics of China[M]. Beijing: Geological Publishing, 2011.
|
[15] |
徐杰, 高战武, 宋长青, 等. 太行山山前断裂带的构造特征[J]. 地震地质, 2000, 22(2):111-122.
|
[15] |
Xu J, Gao Z W, Song C Q, et al. The structural characters of the piedmont fault zone of Taihang Mountain[J]. Seismology and Geology, 2000, 22(2):111-122.
|
[16] |
杨明慧, 刘池阳, 杨斌谊, 等. 冀中坳陷古近纪的伸展构造[J]. 地质论评, 2002, 48(1):58-67.
|
[16] |
Yang M H, Liu C Y, Yang B Y, et al. Extensional structures of the Paleogene in the central Hebei Basin[J]. China Geological Review, 2002, 48(1):58-67.
|
[17] |
范玉璐, 谭成轩, 张鹏, 等. 雄安新区现今地应力环境及其对构造稳定性影响研究[J]. 地球学报, 2020, 41(4):482-491.
|
[17] |
Fan Y L, Tan C X, Zhang P, et al. A study of current in-situ stress state and its influence on tectonic stability in the Xiongan New Area[J]. Acta Geoscientica Sinica, 2020, 41(4):482-491.
|
[18] |
郝爱兵, 吴爱民, 马震, 等. 雄安新区地上地下工程建设适宜性一体化评价[J]. 地球学报, 2018, 39(5):513-522.
|
[18] |
Hao A B, Wu A M, Ma Z, et al. A study of engineering construction suitability integrated evaluation of surface-underground space in Xiongan New Area[J]. Acta Geoscientica Sinica, 2018, 39(5):513-522.
|
[19] |
张竞, 马震, 吴爱民, 等. 基于岩性光谱特征的雄安新区地面古河道识别研究[J]. 地球学报, 2018, 39(5):542-548.
|
[19] |
Zhang J, Ma Z, Wu A M, et al. A study of paleochannels interpretation by the spectrum of lithology in Xiongan New Area[J]. Acta Geoscientica Sinica, 2018, 39(5):542-548.
|
[20] |
马震, 夏雨波, 王小丹, 等. 雄安新区工程地质勘查数据集成与三维地质结构模型构建[J]. 中国地质, 2019, 46(S2):123-129.
|
[20] |
Ma Z, Xia Y B, Wang X D, et al. Integration of engineering geological investigation data and construction of a 3D geological structure model in the Xiongan New Area[J]. Geology in China, 2019, 46(S2):123-129.
|
[21] |
酆少英, 龙长兴, 高锐, 等. 高分辨折射和浅层反射地震方法在活断层探测中的联合应用[J]. 地震学报, 2010, 32(6):718-724,767.
|
[21] |
Feng S Y, Long C X, Gao R, et al. Joint application of high-resolution refraction and shallow reflection exploration approach to active fault survey[J]. Acta Seismologica Sinica, 2010, 32(6):718-724,767.
|
[22] |
严加永, 孟贵祥, 吕庆田, 等. 高密度电阻率测深的进展与展望[J]. 物探与化探, 2012, 36(4):576-584.
|
[22] |
Yan J Y, Meng G X, Lyu Q T, et al. The progress and prospect of the electrical resistivity imaging survey[J]. Geophysical and Geochemical Exploration, 2012, 36(4):576-584.
|
[23] |
马岩, 李洪强, 张杰, 等. 雄安新区城市地下空间探测技术研究[J]. 地球学报, 2020, 41(4):535-542.
|
[23] |
Ma Y, Li H Q, Zhang J, et al. Geophysical technology for underground space exploration in Xiongan New Area[J]. Acta Geoscientica Sinica, 2020, 41(4):535-542.
|
[24] |
邓小娟, 酆少英, 朱学申, 等. 利用二维活断层探测资料构建焦作地区浅层三维构造模型[J]. 大地测量与地球动力学, 2020, 40(7):682-687.
|
[24] |
Deng X J, Feng S Y, Zhu X S, et al. Using the 2D active fault seismic data to construct the shallow 3D structural model of Jiaozuo area[J]. Journal of Geodesy and Geodynamics, 2020, 40(7):682-687.
|
[25] |
刘顺昌, 徐德馨, 张春梅. 武汉都市发展区工程地质三维模型建设及应用[J]. 城市勘测, 2016(4):160-163.
|
[25] |
Liu S C, Xu D X, Zhang C M. Build and application of the 3D geological model in WuHan urban development Zone[J]. Urban Geotechnical Investigation & Surveying, 2016(4):160-163.
|
|
|
|