|
|
Application effect analysis of UAV aeromagnetic survey technology in desert and semidesert regions |
WANG Meng( ), LIU Yuan-Yuan, WANG Da-Yong, DONG Gen-Wang, TIAN Liang, HUANG Jin-Hui, LIN Man-Man |
Geophysical Exploration Academy of China Metallurgical Geology Bureau, Baoding 071051, China |
|
|
Abstract The UAV aeromagnetic survey technology has continuously developed and gradually applied to different geomorphic landscape areas. This study aims to verify the application effects of the UAV aeromagnetic survey technology in the desert and semidesert regions in China. To this end, the applicability tests of UAV types were performed according to the characteristics of the natural environment in the desert and semidesert regions. Then the applicability of multi-rotor UAVs and vertical take-off and landing fixed-wing UAVs in the desert and semidesert regions was assessed from the ability to resist wind, terrain-following ability, battery life, efficiency, and the quality of data acquisition. Through the qualitative and quantitative comparative analysis of the results obtained from UAV aeromagnetic surveys and ground magnetic surveys, the practicability and reliability of the UAV aeromagnetic survey technology in the desert and semidesert regions in West China was measured. It is considered that UAV aeromagnetic survey technology enjoys the advantages of high precision of data collection and high efficiency compared to the ground magnetic survey. Therefore, the UAV aeromagnetic survey technology is worthy of widespread application as a geophysical prospecting method and technique.
|
Received: 22 April 2021
Published: 25 February 2022
|
|
|
|
|
|
Location diagram of the test area
|
试验内容 | 影响因素 | 多旋翼无人机 | 垂直起降固定翼无人机 | 抗风能力 | 航磁设备集成 | 机体下方,支杆安装 | 隐藏式安装 | 最大可抗风力 | 4级(5.5~7.9 m/s) | 6级(10.8~13.8 m/s) | 地形跟随能力 | 航速 | 航速20~30 km/h, 地形跟随能力强 | 航速60~70 km/h,地形跟随 能力低于多旋翼机型 | 续航能力与 工作效率 | 电池 | 多块锂电池 | 1块大容量锂电池组 | 最大续航时间 | 20~30 min | ≤120 min | 续航里程 | <20 km | >100 km | 数据采集质量 | 方向差 | 在全区固定探头指向,不涉及正反向测线飞行时存在的方向差问题 | 存在方向差,可通过补偿去除 | 测量飞行状态 | 偏离测线、大幅度的抖动及摇摆现象,会引入较多的干扰因素 | 飞行平稳,偏航小 |
|
Applicability test results of UAV
|
|
Comparison of terrain following ability of different UAVs
|
|
Comparison of UAV aeromagnetic data acquisition effects
|
|
Schematic diagram of UAV aeromagnetic measurement system a—CW-15 VTOL fixed wing aircraft produced by JOUAV;b—rubidium optical-pumping magnetometer probe; c—three-axis fluxgate magnetometer probe
|
仪器类型 | 质子磁力仪 | 铷光泵磁力仪 | 产地 | 捷克 | 加拿大 | 测量范围/nT | 20 000~100 000 | 1 000~100 000 | 分辨率/nT | 0.1 | 0.0001 | 绝对精度/nT | ±1 | — | 灵敏度 | — | <0.02 nT/√Hz@0.1~100 Hz | 梯度容限 | 5 000 nT·m-1 | 1 000 nT·cm-1 |
|
Comparison of technical parameters of aeromagnetic and geomagnetic instruments
|
|
Macroscopic comparison of UAV aeromagnetic and geomagnetic a—the ground magnetic image map overlays aeromagnetic contour map;b—upward continuation 120 m image map of ground magnetic survey overlays aeromagnetic contour map
|
|
Comparison of UAV aeromagnetic and geomagnetic ΔT profile curves
|
|
Ground magnetic upward continuation image map superimposed with aeromagnetic contour map
|
[1] |
崔志强, 胥值礼, 孟庆敏, 等. 现行三类平台航磁勘查系统特点及勘查效果评述[J]. 物探化探计算技术, 2015,37(4):437-443.
|
[1] |
Cui Z Q, Xu Z L, Meng Q M, et al. Review on exploration effect and characteristics of aeromagnetic survey system based on current three types flying-platform[J]. Computing Techniques for Geophysical and Geochemical Exploration, 2015,37(4):437-443.
|
[2] |
李军峰, 李文杰, 秦绪文, 等. 新型无人机航磁系统在多宝山矿区的应用试验[J]. 物探与化探, 2014,38(4):846-850.
|
[2] |
Li J F, Li W J, Qin X W, et al. Trial survey of a novel UAV-borne magnetic system in the Duobaoshan ore district[J]. Geophysical and Geochemical Exploration, 2014,38(4):846-850.
|
[3] |
张津伟, 武力聪, 杨春, 等. 几种低空高精度航空磁测系统及找矿应用分析[J]. 矿产与地质, 2014,28(1):124-128.
|
[3] |
Zhang J W, Wu L C, Yang C, et al. Several high resolution aeromagnetic systems surveyed at very low altitude and mine prospecting application analysis[J]. Mineral Resources and Geology, 2014,28(1):124-128.
|
[4] |
崔志强, 李飞, 胥值礼. 彩虹-Ⅲ型无人机航空磁测系统应用示范效果评述[J]. 物探化探计算技术, 2019,41(6):787-797.
|
[4] |
Cui Z Q, Li F, Xu Z L. Application effect evaluation of the rainbow-3 UAV aeromagnetic survey system[J]. Computing Techniques for Geophysical and Geochemical Exploration, 2019,41(6):787-797.
|
[5] |
西永在, 吴珊, 廖桂香, 等. 无人机航空磁测在滩涂区地质调查的应用试验[J]. 物探与化探, 2021,45(2):355-360.
|
[5] |
Xi Y Z, Wu S, Liao G X, et al. An application test of UAV aeromagnetic survey in geological survey of the tidal flat area[J]. Geophysical and Geochemical Exploration, 2021,45(2):355-360.
|
[6] |
李飞, 丁志强, 崔志强, 等. CH-3无人机航磁测量系统在我国新疆不同地形区的应用示范[J]. 地质与勘探, 2018,54(4):735-746.
|
[6] |
Li F, Ding Z Q, Cui Z Q, et al. Application demonstration of the CH-3 UAV-Borne magnetic survey system in different terrain areas of Xinjiang[J]. Geology and Exploration, 2018,54(4):735-746.
|
[7] |
张航, 宋笔锋, 王海峰, 等. 固旋翼无人机垂直起降阶段抗风特性及其影响因素[J]. 系统工程与电子技术, 2019,41(7):1526-1535.
|
[7] |
Zhang H, Song B F, Wang H F, et al. Wind resistance and influencing factors of quadrotor fixed-wing vertical take-off and landing hybrid unmanned aerial vehicle[J]. Systems Engineering and Electronics, 2019,41(7):1526-1535.
|
[8] |
程德福, 王君, 凌振宝, 等. 传感器原理及应用[M]. 北京: 机械工业出版社, 2008.
|
[8] |
Cheng D F, Wang J, Ling Z B, et al. Fundamentals and application of sensors [M]. Beijing: China Machine Press, 2008.
|
[9] |
张昌达, 董浩斌. 量子磁力仪评说[J]. 工程地球物理学报, 2004,1(6):499-507.
|
[9] |
Zhang C D, Dong H B. A review of quantum magnetometers[J]. Chinese Journal of Engineering Geophysics, 2004,1(6):499-507.
|
[10] |
孙中苗, 元宝莹, 翟振和. 航空重力测量的精度评估[J]. 测绘科学与工程, 2013,33(2):6-10.
|
[10] |
Sun Z M, Yuan B Y, Zhai Z H. Accuracy estimation of the airborne gravimetry[J]. Geomatic Science and Engineering, 2013,33(2):6-10.
|
[11] |
蒋涛, 肖学年, 党亚民, 等. 航空重力向上延拓的外部精度评估[J]. 测绘学报, 2018,47(5):567-574.
|
[11] |
Jiang T, Xiao X N, Dang Y M, et al. Evaluation of the external accord accuracy of airborne gravity data with upward continuation[J]. Acta Geodaetica et Cartographica Sinica, 2018,47(5):567-574.
|
[1] |
ZHAO Bao-Feng, WANG Qi-Nian, GUO Xin, GUAN Da-Wei, CHEN Tong-Gang, FANG Wen. Gravity survey and audio magnetotellurics-based insights into the deep structures and geothermal resource potential of the Rucheng Basin[J]. Geophysical and Geochemical Exploration, 2023, 47(5): 1147-1156. |
[2] |
HE Sheng, WANG Wan-Ping, DONG Gao-Feng, NAN Xiu-Jia, WEI Feng-Feng, BAI Yong-Yong. Application of the opposing-coils transient electromagnetic method in urban geological surveys[J]. Geophysical and Geochemical Exploration, 2023, 47(5): 1379-1386. |
|
|
|
|