|
|
The application of the comprehensive electric and seismic method to coal exploration in the huge Cenozoic coverage area |
YU Yong-Peng1(), YAN Zhao-Tao2(), MAO Xing-Jun1, YANG Yan-Cheng1, MA Yong-Xiang1, HUANG Peng-Cheng1, LU Ai-Guo1, ZHANG Guang-Bing1 |
1. Coal Geology Bureau of Ningxia Hui Autonomous Region, Yinchuan 750002, China 2. Geophysical and Geochemical Exploration Institute of Ningxia Hui Autonomous Region,Yinchuan 750004, China |
|
|
Abstract The huge Cenozoic sediments have a strong absorption and attenuation effect on electromagnetic waves and seismic waves, and it is difficult for a single method to achieve the purpose of coal exploration. In the coal exploration of a huge Cenozoic coverage area at the western foot of the Xiangshan Mountain in Ningxia, the investment in 2D seismic exploration failed to achieve the expected purpose. In this study, the electrical method with controlled source audio magnetotelluric method as the main and direct current sounding as the supplementary method was implemented for exploration. The comprehensive method successfully delineated the range of coal-bearing strata and determined the coal-bearing nature of the coal-bearing strata. Through drilling verification and subsequent geological survey work, the comprehensive method of electro-seismic was proved to be economical and effective in coal prospecting in the area covered with huge Cenozoic sediments.
|
Received: 10 March 2021
Published: 15 December 2021
|
|
Corresponding Authors:
YAN Zhao-Tao
E-mail: yyp0527@126.com;1020437919@qq.com
|
|
|
|
|
Regional geology and engineering layout of the study area
|
地层 | 主要岩性 | 电阻率/(Ω·m) | 电性分层 | 平均值 | 变化范围 | 第四系 | 黄土、河床冲积层及洪积物 | 6 | 4~11 | 第1层 | 新近系中上部 | 黏土、砂质黏土 | 13 | 8~15 | | 新近系下部 | 含砾细砂、砾石层 | 25 | 15~30 | 第2层 | 侏罗系延安组 | 粗—细粒砂岩、粉砂岩、煤层 | 16 | 11~72 | 第3层 | 侏罗系芨芨沟组 | 含砾粗砂岩、粗粒砂岩、砾岩、细粒砂岩 | 30 | 22~46 | 第4层 | 二叠系红泉组 | 细粒砂岩、中粒砂岩、粗粒砂岩 | 62 | 27~99 | | 奥陶系 | 变质岩 | 120 | | |
|
Characteristics of formation resistivity in the study area
|
|
Electrical depth-inversion resistivity curve of measuring point V1 and simple histogram of drilling hole
|
地层名称 | 钻孔揭露 底界/m | | | 新生界 | 中上部 | | 275 | 12 | 260 | 6~14 | 底部砾石层 | 345.04 | 345 | 30 | 340 | 21 | 侏罗系延安组 | 593.40 | 593 | 16 | 585 | 12~18 | 侏罗系芨芨沟组 | 732.22 | 732 | >29 | 745 | >25 | 二叠系 | 未揭穿 | | | | |
|
Comparison table of CSAMT inversion results and drilling disclosures next to the ZK3 hole
|
|
CSAMT inversion of resistivity contour section and inference interpretation diagram of line D3
|
|
Seismic exploration time profile and inference interpretation diagram of line D3
|
|
D3 line geological section map
|
地层名称 | 地层底界深度/m | CSAMT反演结果 | 钻探揭露 | 新生界 | 390 | 397.00 | 侏罗系延安组 | 736 | 776.77 | 侏罗系芨芨沟组 | 890 | 未打穿 |
|
Verification results of drilling ZK5
|
[1] |
宁夏回族自治区地质矿产局. 宁夏回族自治区岩石地层[M]. 武汉: 中国地质大学出版社, 1996.
|
[1] |
Bureau of Geology and Mineral Resources of Ninxia Hui Autonomous region. Stratigraphy (Lithostratic) of Ningxia Hui autonomous region [M]. Wuhan: China University of Geosciences Press, 1996.
|
[2] |
彭苏萍, 高云峰, 彭晓波, 等. 淮南煤田含煤地层岩石物性参数研究[J]. 煤炭学报, 2004, 29(2):177-181.
|
[2] |
Peng S P, Gao Y F, Peng X B, et al. Study on the rock physic parameters of coal bearing strata in Huainan coalfield[J]. Journal of China Coal Society, 2004, 29(2):177-181.
|
[3] |
刘永芳. 平朔矿区含煤地层地球物理特征分析[J]. 煤炭技术, 2019, 38(7):98-100.
|
[3] |
Liu Y F. Analysis of geophysical characteristics of coal bearing strata in Pingshuo mining area[J]. Coal Technology, 2019, 38(7):98-100.
|
[4] |
胡丁玉, 邹长春, 彭诚, 等. 松科二井火石岭组地层岩石物理学特征研究[J]. 中国地质, 2019, 46(5):1161-1173.
|
[4] |
Hu D Y, Zou C H, Peng C, et al. Petrophysical characteristics of Huoshiling Formation from CCSD SK-2 in the Songliao Basin of Northeast China[J]. Geology in China, 2019, 46(5):1161-1173.
|
[5] |
许崇宝, 王晶, 曾爱平. 地震勘探技术在煤炭勘查中的应用与展望[J]. 山东国土资源, 2016, 32(1):1-8.
|
[5] |
Xu C B, Wang J, Zeng A P. Application and prospect of seismic exploration technology in coal exploration[J]. Shangdong Land and Resources, 2016, 32(1):1-8.
|
[6] |
王翠华. 折射静校应用研究[J]. 石油物探, 2000, 39(4):107-113.
|
[6] |
Wang C H. An application study of refraction statics[J]. Geophysical Prospecting for Petroleum, 2000, 39(4):107-113.
|
[7] |
钱绍瑚. 高分辨率勘探与地震仪器[J]. 物探与化探, 1995, 19(2):114-121.
|
[7] |
Qian S H. High resolution exploration and seismographs[J]. Geophysical and Geochemical Exploration, 1995, 19(2):114-121.
|
[8] |
刘国利, 邓新刚, 马如庆. 可控源音频大地电磁法在巨厚低阻含水层下富水性探测中的应用研究[J]. 煤炭技术, 2018, 37(5):151-153.
|
[8] |
Liu G L, Deng X G, Ma R Q. Study on application of controlled source audio magnetotelluric method in detecting water richness in thick and low impedance aquifer[J]. Coal Technology, 2018, 37(5):151-153.
|
[9] |
余永鹏, 丁占平, 张红亮, 等. CSAMT在煤矿水文勘查中的应用效果研究[J]. 工程地球物理学报, 2012, 9(5):560-564.
|
[9] |
Yu Y P, Ding Z P, Zhang H L, et al. The application of exploration CSAMT to hydrologic in a coal mine[J]. Chinese Journal of Engineering Geophysics, 2012, 9(5):560-564.
|
[10] |
刁清建. 可控源音频大地电磁测深法在青藏高原煤田地质勘探中的应用[J]. 中国煤炭地质, 2011, 23(12):46-50.
|
[10] |
Diao Q J. Controlled-source audio magnetotelluric sounding method applied to coal geological exploration in Qinghai-Tibetan Plateau[J]. Coal Geology of China, 2011, 23(12):46-50.
|
[11] |
成江明. 可控源音频大地电磁法在隐伏煤矿区的应用[J]. 地球物理学进展, 2008, 23(4):1269-1272.
|
[11] |
Cheng J M. Application of CSMAT method in hidden coalmine[J]. Progress in Geophysics, 2008, 23(4):1269-1272.
|
[12] |
刘永亮, 孙海川, 鲁国防. 综合物探在平山湖地区煤炭勘查中的应用[J]. 物探与化探, 2015, 39(4):738-742.
|
[12] |
Liu Y L, Sun H C, Lu G F. The application of integrated methods to the coal exploration in Pingshanhu area[J]. Geophysical and Geochemical Exploration, 2015, 39(4):738-742.
|
[13] |
李波, 屈利军, 郭海, 等. 可控源音频大地电磁测深(CSAMT)攻深找盲探测效果分析——以湖南湘中煤矿资源勘查为例[J]. 矿产勘查, 2018, 9(11):2226-2232.
|
[13] |
Li B, Qu L J, Guo H, et al. Analysis of the effects of controlled source audio-frequency magnetotellurics sounding (CSAMT) on deep mineral detection: Taking exploration of coal mine in middle part of Hunan Province as an example[J]. Mineral Exploration, 2018, 9(11):2226-2232.
|
[14] |
林威. CSAMT法过渡区电磁场的特征[J]. 物探与化探, 2009, 33(2):148-150.
|
[14] |
Lin W. Transition region electromagnetic field characteristicsof the CSAMT method[J]. Geophysical and Geochemical Exploration, 2009, 33(2):148-150.
|
[15] |
顾观文, 梁萌, 吴文鹂, 等. CSAMT一维自动迭代和人机联作方式交替反演进行拟二维反演解释[J]. 物探化探计算技术, 2009, 31(3):193-196.
|
[15] |
Gu G W, Liang M, Wu W L, et al. Pseudo-2D inversion interpretation for CSAMT data using 1D automatic iterative and man-machine interactive inversion by turns[J]. Computing Techniques For Geophysical and Geochemical Exploration, 2009, 31(3):193-196.
|
[16] |
底青云, 王若. 可控源音频大地电磁数据正反演及方法应用[M]. 北京: 科学出版社, 2008.
|
[16] |
Di Q Y, Wang R. Forward and inversion of CSAMT data and its application [M]. Beijing: Science Press, 2008.
|
[17] |
章惠, 隋少强, 钱烙然, 等. 多种非震方法在山东齐河地热勘查中的应用[J]. 物探与化探, 2020, 44(4):727-733.
|
[17] |
Zhang H, Sui S Q, Qian L R, et al. The application of multiple non-seismic methods to geothermal exploration in Qihe, Shandong Province[J]. Geophysical and Geochemical Exploration, 2020, 44(4):727-733.
|
[1] |
XUE Dong-Xu, LIU Cheng, GUO Fa, WANG Jun, XU Duo-Xun, YANG Sheng-Fei, ZHANG Pei. Predicting the geothermal resources of the Tangyu geothermal field in Meixian County, Shaanxi Province, based on soil radon measurement and the controlled source audio magnetotelluric method[J]. Geophysical and Geochemical Exploration, 2023, 47(5): 1169-1178. |
[2] |
YANG Tian-Chun, HU Feng-Ming, YU Xi, FU Guo-Hong, LI Jun, YANG Zhui. Analysis and application of the responses of the frequency selection method of telluric electricity field[J]. Geophysical and Geochemical Exploration, 2023, 47(4): 1010-1017. |
|
|
|
|