|
|
Geochemical characteristics and ecological risk assessment of heavy metals in granitic magmatic soil: A case study of the Jiucheng-Jiemao area in Yingjiang County, Yunnan Province |
XIAO Gao-Qiang1,2( ), XIANG Long-Zhou3, DAI Da-Long1, GAO Xiao-Hong1, ZONG Qing-Xia3 |
1. Yunnan Institute of Geological Survey, Kunming 650216, China 2. Key Laboratory of Sanjing Metallogeny and Resources Exploration and Utilization, MNR, Kunming 650051, China 3. Yunnan Planning and Design Institute of Land and Resources, Kunming 650216, China |
|
|
Abstract Based on 238 rock samples and 4,931 soil samples collected from the Jiucheng-Jiemao area of Yingjiang County, Yunnan Province, and compared with other geological units, this paper is focused on the study of geochemical characteristics and sources of heavy metals in granitic magmatic rocks and soils as well as ecological risk assessment of soil heavy metals. According to the results obtained, the granitic magmatic rocks and Gaoligongshan group(Pt1GL.)rocks have similar provenances or inheritances. The Pb content in the two kinds of rocks is higher than that in the upper crust, while the content of other heavy metals is lower. The soil heavy metal content and change characteristics of the Quaternary (Qa), Mangbang formation (N2m) and Gaoligongshan group (Pt1GL.) are basically the same as those of the granitic magmatic rock, which are significantly lower than the Quaternary (Qb) and Guanshang formation (D1g). Combined with lithologic compositions, the soil parent materials of the Quaternary (Qa), Mangbang formation (N2m) and Gaoligongshan group (Pt1GL.)may be mainly granitic magmatic rocks. The soil heavy metal values of the granitic magmatic rock and Guanshang formation (D1g) are mainly affected by natural sources, and the influence of human activities is little. The geoaccumulation index and the potential ecological risk index indicate that the granitic magmatic soil has a low ecological risk of heavy metals and is a clean soil.The soil-forming parent materials of farmland with the production function of grain, sugar, vegetable, etc. in Dehong Prefecture are mainly granitic magmatic rock, but related study work is insufficient. Through comparative research, it is believed that Dehong Prefecture has great potential in developing green and pollution-free food production.
|
Received: 14 November 2020
Published: 15 December 2021
|
|
|
|
|
|
Geological map of Yingjiang County(a) and its regional geology(b) and regional location (c)
|
地质单元 | 统计参数 | As | Cd | Cr | Cu | Hg | Ni | Pb | Zn | N2m(n=6) | 最小值/10-6 | 1.49 | 0.01 | 29.9 | 8.14 | 0.009 | 7.5 | 14.3 | 13.6 | | 最大值/10-6 | 3.23 | 0.13 | 56 | 26.2 | 0.055 | 29.1 | 48.4 | 98.7 | | 算术平均值/10-6 | 2.40 | 0.053 | 40.8 | 15.9 | 0.025 | 15.0 | 26.0 | 52.1 | | 标准差/10-6 | 0.72 | 0.056 | 9.26 | 7.14 | 0.02 | 7.81 | 15.0 | 35.3 | | 变异系数/% | 29.8 | 105 | 22.7 | 45.0 | 72.9 | 52.0 | 57.8 | 67.8 | | 中位值/10-6 | 2.41 | 0.025 | 38.8 | 14.7 | 0.021 | 13.1 | 17.9 | 40.4 | D1g(n=50) | 最小值/10-6 | 0.69 | 0.01 | 15.7 | 7.42 | 0.005 | 3.61 | 7.24 | 7.85 | | 最大值/10-6 | 469 | 0.15 | 178 | 51.1 | 0.008 | 57.2 | 74.9 | 189 | | 算术平均值/10-6 | 33.4 | 0.053 | 80.9 | 21.7 | 0.006 | 35.8 | 20.5 | 84.1 | | 标准差/10-6 | 104 | 0.035 | 34.2 | 8.65 | 0.001 | 14.8 | 12.0 | 36.2 | | 变异系数/% | 311 | 66.8 | 42.3 | 39.9 | 9.56 | 41.3 | 58.4 | 43.1 | | 中位值/10-6 | 2.8 | 0.040 | 88.4 | 20.8 | 0.006 | 40.3 | 17.9 | 87.4 | Pt1GL.(n=55) | 最小值/10-6 | 0.61 | 0.01 | 7.24 | 4.8 | 0.006 | 1.8 | 34.8 | 4.95 | | 最大值/10-6 | 4.95 | 0.08 | 26.5 | 34.3 | 0.018 | 18.3 | 71.4 | 132 | | 算术平均值/10-6 | 2.16 | 0.027 | 11.4 | 11.0 | 0.010 | 4.03 | 50.3 | 30.2 | | 标准差/10-6 | 0.90 | 0.012 | 2.57 | 5.09 | 0.002 | 2.24 | 9.57 | 23.8 | | 变异系数/% | 41.5 | 43.8 | 22.6 | 46.2 | 23.6 | 55.6 | 19.0 | 78.9 | | 中位值/10-6 | 1.91 | 0.030 | 11 | 9.32 | 0.01 | 3.56 | 48.8 | 21.0 | 花岗质岩浆岩(n=127) | 最小值/10-6 | 0.37 | 0.01 | 7.17 | 2.99 | 0.005 | 1.24 | 5.05 | 4.86 | | 最大值/10-6 | 8.53 | 0.11 | 73.5 | 27.3 | 0.046 | 29.1 | 55.3 | 95.2 | | 算术平均值/10-6 | 2.13 | 0.027 | 16.2 | 8.68 | 0.009 | 6.34 | 28.3 | 37.9 | | 标准差/10-6 | 1.17 | 0.014 | 9.03 | 3.59 | 0.006 | 4.63 | 13.4 | 18.1 | | 变异系数/% | 54.8 | 52.6 | 55.9 | 41.4 | 62.7 | 73.1 | 47.1 | 47.7 | | 中位值/10-6 | 1.94 | 0.020 | 13.6 | 7.82 | 0.007 | 4.66 | 29.8 | 41.2 | 上地壳含量[43]/10-6 | 4.8 | 0.09 | 92 | 28 | 0.05 | 47 | 17 | 67 |
|
Statistical results of heavy metal content in rocks of different geological units
|
|
Variation characteristics of heavy metal content in rocks and soils in different geological units
|
地质单元 | 统计参数 | As | Cd | Cr | Cu | Hg | Ni | Pb | Zn | Qa(n=3018) | 含量范围/10-6 | 0.03~35.4 | 0.01~1.79 | 4.24~127 | 2.08~65.5 | 0.006~0.453 | 0.85~78.7 | 15.9~305 | 20~331 | | 算术平均值/10-6 | 2.64 | 0.094 | 38.4 | 12.4 | 0.032 | 13.7 | 41.7 | 68.8 | | 变异系数/% | 86.5 | 82.7 | 40.7 | 43.0 | 71.2 | 52.3 | 27.5 | 27.7 | | 中位值/10-6 | 2.15 | 0.080 | 38.2 | 11.7 | 0.028 | 13.1 | 41.6 | 67.1 | Qb(n=674) | 含量范围/10-6 | 0.18~136 | 0.01~4.06 | 10.3~175 | 4.45~68.6 | 0.007~0.628 | 3.69~137 | 8.52~372 | 19.5~533 | | 算术平均值/10-6 | 15.5 | 0.142 | 88.8 | 27.4 | 0.048 | 41.1 | 48.8 | 91.2 | | 变异系数/% | 83.0 | 149.9 | 40.8 | 39.5 | 77.3 | 48.8 | 51.9 | 45.5 | | 中位值/10-6 | 13.5 | 0.090 | 91.6 | 29.2 | 0.044 | 43.3 | 42.5 | 84.1 | N2m(n=258) | 含量范围/10-6 | 0.05~51.4 | 0.01~1.58 | 7.42~108 | 2.68~52.4 | 0.006~0.145 | 2.25~53 | 22.2~221 | 26.4~341 | | 算术平均值/10-6 | 4.30 | 0.049 | 48.1 | 13.2 | 0.039 | 18.9 | 37.0 | 59.1 | | 变异系数/% | 104.4 | 206.3 | 49.9 | 58.7 | 48.2 | 61.7 | 36.7 | 39.4 | | 中位值/10-6 | 3.05 | 0.040 | 44.9 | 10.95 | 0.036 | 16.0 | 35.7 | 57.5 | D1g(n=396) | 含量范围/10-6 | 2.61~296 | 0.01~3.46 | 37.3~152 | 8.23~91.6 | 0.017~0.13 | 16.9~137 | 13.5~899 | 17.1~887 | | 算术平均值/10-6 | 25.7 | 0.195 | 103 | 35.2 | 0.060 | 51.9 | 60.2 | 122 | | 变异系数/% | 126.7 | 174.6 | 17.6 | 27.2 | 30.3 | 29.9 | 148.5 | 61.2 | | 中位值/10-6 | 17.5 | 0.095 | 104 | 35.5 | 0.058 | 49.9 | 37.4 | 109 | Pt1GL.(n=198) | 含量范围/10-6 | 0.1~11.2 | 0.01~0.17 | 11.5~108 | 3.05~52.8 | 0.012~0.165 | 1.99~56.2 | 8.25~94.8 | 17.1~329 | | 算术平均值/10-6 | 3.10 | 0.046 | 48.8 | 14.4 | 0.051 | 18.6 | 39.3 | 67.9 | | 变异系数/% | 80.4 | 56.5 | 53.8 | 72.8 | 42.0 | 70.5 | 30.2 | 37.9 | | 中位值/10-6 | 2.28 | 0.040 | 41.2 | 9.34 | 0.047 | 14.6 | 40.2 | 65.8 | 花岗质岩浆岩(n=374) | 含量范围/10-6 | 0.03~13 | 0.01~0.771 | 2~281 | 2.88~40.8 | 0.007~0.149 | 1.01~109 | 7.5~76.8 | 20.5~145 | | 算术平均值/10-6 | 3.17 | 0.041 | 49.2 | 12.7 | 0.045 | 17.6 | 35.2 | 55.7 | | 变异系数/% | 86.9 | 125.8 | 56.7 | 60.5 | 44.9 | 72.0 | 33.8 | 28.0 | | 中位值/10-6 | 2.20 | 0.030 | 47.6 | 10.65 | 0.040 | 15.6 | 36.0 | 53.7 | 云南省土壤背景值[38]/10-6 | 18.4 | 0.22 | 65.2 | 46.3 | 0.06 | 42.5 | 40.6 | 89.7 | 宣威市落水镇[44]/10-6 | 13.6 | 1.62 | 135.2 | 233.8 | 0.09 | 74.5 | 32.8 | 185.7 | 宣威市热水镇[45]/10-6 | 18.1 | 1.18 | 174.1 | 202.2 | 0.09 | 71.1 | 34.9 | 167.2 | 广南县[46]/10-6 | 29.88 | 4.96 | 111.49 | 50.02 | 0.35 | 63.58 | 45.42 | 224.63 | 保山市[47]/10-6 | 23 | 0.269 | 128 | 48.7 | 0.178 | 57.9 | 45.2 | 114.8 |
|
Statistical results of average soil heavy metal content in different geological units
|
|
Soil environmental grade evaluation
|
|
Variation characteristics of heavy metal content in farming soil and natural soil with different parent materials
|
|
The element rotation factor loading diagram in Guanshang group (D1g) soil
|
|
The element rotation factor loading diagram in Granitic magmatic soil
|
|
Evaluation map of the accumulation index (Igeo) of heavy metals in different soil parent materials
|
|
Evaluation map of potential ecological risk index of heavy metals in different soil parent materials
|
[1] |
吴克宁. 耕地质量及其提升“密码”的破译[J]. 国土资源科普与文化, 2017(4):12-17.
|
[1] |
Wu K N. Cultivated land quality and its improvement[J]. Popularization of Land and Resources Science and Culture, 2017(4):12-17.
|
[2] |
中国地质调查局. 中国耕地地球化学调查报告(2015年)[EB/OL]. 中国地质调查局网站, 2015-06-25[2020-09-25]. http://www.cgs.gov.cn/upload/201506/20150626/gdbg.pdf .
|
[2] |
China Geological Survey. China’s cultivated land geochemical survey report (2015) [EB/OL]. China Geological Survey website, 2015-06-25[2020-09-25]. http://www.cgs.gov.cn/upload/201506/20150626/gdbg.pdf .
|
[3] |
骆永明, 滕应. 我国土壤污染的区域差异与分区治理修复策略[J]. 中国科学院院刊, 2018, 33(2):145-152.
|
[3] |
Luo Y M, Teng Y. Regional difference in soil pollution and strategy of soil zonal governance and remediation in China[J]. Bulletin of the Chinese Academy of Sciences, 2018, 33(2):145-152.
|
[4] |
Zhao F J, Ma Y, Zhu Y G, et al. Soil contamination in China: Current status and mitigation strategies[J]. Environ Sci Technol, 2015, 49(2):750-759.
|
[5] |
Chen H, Teng Y, Lu S, et al. Contamination features and health risk of soil heavy metals in China[J]. Science of The Total Environment, 2015(512-513):143-153.
|
[6] |
周江明. 中国耕地重金属污染现状及其人为污染源浅析[J]. 中国土壤与肥料, 2020(2):83-92.
|
[6] |
Zhou J M. The present status of heavy metal(loid)s pollution in farmland soils and analysis of polluting sources in China[J]. Soils and Fertilizers Sciences in China, 2020(2):83-92.
|
[7] |
Cai L, Xu Z, Bao P, et al. Multivariate and geostatistical analyses of the spatial distribution and source of arsenic and heavy metals in the agricultural soils in Shunde, Southeast China[J]. Journal of Geochemical Exploration, 2015, 148:189-195.
|
[8] |
崔元俊, 李肖鹏, 董建, 等. 山东烟台金矿区及城镇周边土壤重金属化学形态分布及转化[J]. 物探与化探, 2013, 37(6):1100-1106.
|
[8] |
Cui Y J, Li X P, Dong J, et al. The chemical speciation distribution and transition of heavy metals in soil around gold ore districts as well as cities and towns in Yantai, Shandong province[J]. Geophysical and Geochemical Exploration, 2013, 37(6):1100-1106.
|
[9] |
孙泽航. 小型多金属矿山周边土壤及作物重金属污染及居民潜在健康风险评估[D]. 广州:中国科学院大学, 2020.
|
[9] |
Sun Z H. Soil and crops heavy metal pollution and potential health risk assessment for the residents around small-scale polymetallic mine[D]. Guangzhou:University of Chinese Academy of Sciences, 2020.
|
[10] |
Xie W, Peng C, Wang H, et al. Bioaccessibility and source identification of heavy metals in agricultural soils contaminated by mining activities[J]. Environmental Earth Sciences, 2018, 77(17):1-12.
|
[11] |
薛淼, 谢金亮. 我国城市生活垃圾焚烧厂周边土壤重金属和有机污染特征[J]. 有色冶金节能, 2019, 35(4):60-65.
|
[11] |
Xue M, Xie J L. Characteristics of heavy metals and organic pollution in soil around MSW incineration plant in China[J]. Energy Saving of Nonferrous Metallurgy, 2019, 35(4):60-65.
|
[12] |
焦海林. 城市生活污水和污泥中的重金属[J]. 化学工程与装备, 2019, 271(8):319-321.
|
[12] |
Jiao H L. Heavy metals in municipal sewage and sludge[J]. Chemical Engineering & Equipment, 2019, 271(8):319-321.
|
[13] |
Singh P, Purakayastha T J, Mitra S, et al. River water irrigation with heavy metal load influences soil biological activities and risk factors[J]. Journal of Environmental Management, 2020, 270:110517.
|
[14] |
Sardar A, Shahid M, Natasha , et al. Risk assessment of heavy metal(loid)s via Spinacia oleracea ingestion after sewage water irrigation practices in Vehari District[J]. Environmental Science and Pollution Research, 2020, 27(32):39841-39851.
|
[15] |
杨硕, 阎秀兰, 冯依涛. 河北曹妃甸某农场农田土壤重金属空间分布特征及来源分析[J]. 环境科学学报, 2019, 39(9):3064-3072.
|
[15] |
Yang S, Yan X L, Feng Y T. Spatial distribution and source identification of heavy metals in the farmland soil of the Caofeidian in Hebei Province[J]. Acta Scientiae Circumstantiae, 2019, 39(9):3064-3072.
|
[16] |
王增辉. 鲁西南平原区大气干湿沉降元素输入通量及来源浅析:以巨野县为例[J]. 物探与化探, 2020, 44(4):839-846.
|
[16] |
Wang Z H. An analysis of the input flux and source of elements in dry and wet atmospheric deposition of southwest plain of Shandong: A case study of Juye County[J]. Geophysical and Geochemical Exploration, 2020, 44(4):839-846.
|
[17] |
吕悦风, 谢丽, 朱文娟, 等. 基于环境容量的县域农用地土壤重金属风险概率预警研究[J]. 长江流域资源与环境, 2020, 29(1):253-264.
|
[17] |
Lyu Y F, Xie L, Zhu W J, et al. Risk prediction of heavy metals in farmland soil based on environmental capacity: Case study of the county scale in northern Zhejiang Province[J]. Resources and Environment in the Yangtze Basin, 2020, 29(1):253-264.
|
[18] |
郭颖, 李玉冰, 薛生国, 等. 广西某赤泥堆场周边土壤重金属污染风险[J]. 环境科学, 2018, 39(7):3349-3357.
|
[18] |
Guo Y, Li Y B, Xue S G, et al. Risk analysis of heavy metal contamination in farmland soil around a bauxite residue disposal area in Guangxi[J]. Environmental Science, 2018, 39(7):3349-3357.
|
[19] |
李英华, 杨朝旭, 伯鑫, 等. 生活垃圾焚烧厂周边土壤中PCDD/Fs及重金属含量[J]. 中国环境科学, 2020, 40(2):726-735.
|
[19] |
Li Y H, Yang C X, Bo X, et al. PCDD/Fs levels and heavy metal characteristics in soils surrounding typical municipal waste incineration plants in the Chengdu[J]. China Environmental Science, 2020, 40(2):726-735.
|
[20] |
童立志, 韦黎华, 王峰, 等. 焚烧飞灰重金属含量及浸出长期变化规律研究[J]. 中国环境科学, 2020, 40(5):2132-2139.
|
[20] |
Tong L Z, Wei L H, Wang F, et al. Study on the long-term changes of heavy metal content and leaching behavior of municipal solid waste incineration fly ash[J]. China Environmental Science, 2020, 40(5):2132-2139.
|
[21] |
Wu W, Qu S, Nel W, et al. The influence of natural weathering on the behavior of heavy metals in small basaltic watersheds: A comparative study from different regions in China[J]. Chemosphere, 2020, 262:127897.
|
[22] |
Mendoza-Grimón V, Hernández-Moreno J M, Rodríguez Martín J A, et al. Trace and major element associations in basaltic ash soils of El Hierro Island[J]. Journal of Geochemical Exploration, 2014, 147:277-282.
|
[23] |
Mikkonen H G, van de Graaff R, Clarke B O, et al. Geochemical indices and regression tree models for estimation of ambient background concentrations of copper, chromium, nickel and zinc in soil[J]. Chemosphere, 2018, 210:193-203.
|
[24] |
Wen Y, Li W, Yang Z, et al. Enrichment and source identification of Cd and other heavy metals in soils with high geochemical background in the karst region, Southwestern China[J]. Chemosphere, 2020, 245:125620.
|
[25] |
王佛鹏, 肖乃川, 周浪, 等. 桂西南地球化学异常区农田重金属空间分布特征及污染评价[J]. 环境科学, 2020, 41(2):876-885.
|
[25] |
Wang F P, Xiao N C, Zhou L, et al. Spatial distribution characteristics and pollution assessment of heavy metals on farmland of geochemical anomaly area in Southwest Guangxi[J]. Environmental Science, 2020, 41(2):876-885.
|
[26] |
马宏宏, 彭敏, 刘飞, 等. 广西典型碳酸盐岩区农田土壤—作物系统重金属生物有效性及迁移富集特征[J]. 环境科学, 2020, 41(1):449-459.
|
[26] |
Ma H H, Peng M, Liu F, et al. Bioavailability, translocation, and accumulation characteristic of heavy metals in soil-crop system from a typical carbonate rocks Area in Guangxi, China[J]. Environmental Science, 2020, 41(1):449-459.
|
[27] |
陈同斌, 庞瑞, 王佛鹏, 等. 桂西南土壤镉地质异常区水稻种植安全性评估[J]. 环境科学, 2020, 41(4):1855-1863.
|
[27] |
Chen T B, Pang R, Wang F P, et al. Safety assessment of rice planting in soil cadmium geological anomaly areas in Southwest Guangxi[J]. Environmental Science, 2020, 41(4):1855-1863.
|
[28] |
Xia X, Ji J, Yang Z, et al. Cadmium risk in the soil-plant system caused by weathering of carbonate bedrock[J]. Chemosphere, 2020, 254:126799.
|
[29] |
Peng B, Rate A, Song Z, et al. Geochemistry of major and trace elements and Pb-Sr isotopes of a weathering profile developed on the Lower Cambrian black shales in central Hunan, China[J]. Applied Geochemistry, 2014, 51:191-203.
|
[30] |
Liu Y, Xiao T, Perkins R B, et al. Geogenic cadmium pollution and potential health risks, with emphasis on black shale[J]. Journal of Geochemical Exploration, 2017, 176:42-49.
|
[31] |
赵万伏, 宋垠先, 管冬兴, 等. 典型黑色岩系分布区土壤重金属污染与生物有效性研究[J]. 农业环境科学学报, 2018, 37(7):1332-1341.
|
[31] |
Zhao W F, Song Y X, Guan D X, et al. Pollution status and bioavailability of heavy metals in soils of a typical black shale area[J]. Journal of Agro-Environment Science, 2018, 37(7):1332-1341.
|
[32] |
余昌训, 彭渤, 唐晓燕, 等. 黑色页岩与土壤重金属污染[J]. 矿物岩石地球化学通报, 2008, 27(2):137-145.
|
[32] |
Yu C X, Peng B, Tang X Y, et al. The black shale and relative heavy metal contamination of soils derived from the black shale[J]. Bulletin of Mineralogy, Petrology and Geochemistry, 2008, 27(2):137-145.
|
[33] |
程靖伟. 云南大盈江河谷第四纪地层研究[D]. 北京:中国地质大学(北京), 2013.
|
[33] |
Cheng J W. Study on quaternary strata in Yingjiang valley of Yunnan[D]. Beijing:China University of Geosciences (Beijing), 2013.
|
[34] |
肖高强, 宗庆霞, 向龙洲, 等. 云南省盈江县旧城—姐冒地区土壤和农产品硒地球化学特征及影响因素[J]. 物探与化探, 2020, 44(2):412-418.
|
[34] |
Xiao G Q, Zong Q X, Xiang L Z, et al. Geochemical characteristics and influencing factors of Selenium in soils and agricultural products in the Jiucheng-Jiemao area Yingjiang County, Yunnan Province[J]. Geophysical and Geochemical Exploration, 2020, 44(2):412-418.
|
[35] |
谢冰晶. 滇西南大盈江流域梁河、盈江盆地第四纪地层及活动构造特征研究[D]. 北京:中国地质大学(北京), 2014.
|
[35] |
Xie B J. Research of quaternary strata and active fault in Lianghe and Yingjiang basin of Dayingjiang valley, Southwest Yunnan[D]. Beijing:China University of Geosciences (Beijing), 2014.
|
[36] |
Muller G. Index of geoaccumulation in sediments of the Rhine River[J]. GeoJournal, 1969, 2(3):109-118.
|
[37] |
段嘉欣, 梁斌, 李忠惠, 等. 川南兴文僰王山酸化土壤重金属污染特征及来源解析[J]. 四川环境, 2020, 39(4):129-135.
|
[37] |
Duan J X, Liang B, Li Z H, et al. Pollution characteristics and source analysis of heavy metals in acidified soil in Xingwen area, South Sichuan[J]. Sichuan Environment, 2020, 39(4):129-135.
|
[38] |
中国环境监测总站. 中国土壤元素背景值[M]. 北京: 中国环境科学出版社, 1990.
|
[38] |
China Environmental Monitoring Center. Background value of soil elements in China[M]. Beijing: China Environmental Science Press, 1990.
|
[39] |
陈奕云, 唐名阳, 王淑桃, 等. 基于文献计量的中国农田土壤重金属污染评价[J]. 土壤通报, 2016, 47(1):219-225.
|
[39] |
Chen Y Y, Tang M Y, Wang S T, et al. Evaluation of heavy metal pollution in farmland soil of China based on bibliometrics[J]. Chinese Journal of Soil Science, 2016, 47(1):219-225.
|
[40] |
Hakanson L. An ecological risk index for aquatic pollution control.a sedimentological approach[J]. Water Research, 1980, 14(8):975-1001.
|
[41] |
Tian K, Huang B, Xing Z, et al. Geochemical baseline establishment and ecological risk evaluation of heavy metals in greenhouse soils from Dongtai, China[J]. Ecological Indicators, 2017, 72:510-520.
|
[42] |
周亚龙, 郭志娟, 王成文, 等. 云南省镇雄县土壤重金属污染及潜在生态风险评估[J]. 物探与化探, 2019, 43(6):1358-1366.
|
[42] |
Zhou Y L, Guo Z J, Wang C W, et al. Assessment of heavy metal pollution and potential ecological risks of soils in Zhenxiong County, Yunnan Province[J]. Geophysical and Geochemical Exploration, 2019, 43(6):1358-1366.
|
[43] |
Rudnick R, Gao S. Composition of the Continental Crust[M]//Holland H D, Turekian K K. Treatise on Geochemistry(2nd edition). Oxford:Elsevier Ltd, 2014:4-55.
|
[44] |
唐瑞玲, 王惠艳, 吕许朋, 等. 西南重金属高背景区农田系统土壤重金属生态风险评价[J]. 现代地质, 2020, 34(5):917-927.
|
[44] |
Tang R L, Wang H Y, Lyu X P, et al. Ecological risk assessment of heavy metals in farmland system from an area with high background of heavy metals, Southwestern China[J]. Geoscience, 2020, 34(5):917-927.
|
[45] |
张富贵, 彭敏, 王惠艳, 等. 基于乡镇尺度的西南重金属高背景区土壤重金属生态风险评价[J]. 环境科学, 2020, 41(9):4197-4209.
|
[45] |
Zhang F G, Peng M, Wang H Y, et al. Ecological risk assessment of heavy metals at township scale in the high background of heavy metals, Southwestern, China[J]. Environmental Science, 2020, 41(9):4197-4209.
|
[46] |
洪涛, 孔祥胜, 岳祥飞. 滇东南峰丛洼地土壤重金属含量、来源及潜在生态风险评价[J]. 环境科学, 2019, 40(10):4620-4627.
|
[46] |
Hong T, Kong X S, Yue X F. Concentration characteristics, source analysis, and potential ecological risk assessment of heavy metals in a peak-cluster depression area, Southeast of Yunnan Province[J]. Environmental Science, 2019, 40(10):4620-4627.
|
[47] |
Zhang L, McKinley J, Cooper M, et al. A regional soil and river sediment geochemical study in Baoshan area, Yunnan province, southwest China[J]. Journal of Geochemical Exploration, 2020, 217:106557.
|
[48] |
刘意章, 肖唐付, 宁增平, 等. 三峡库区巫山建坪地区土壤镉等重金属分布特征及来源研究[J]. 环境科学, 2013, 34(6):2390-2398.
|
[48] |
Liu Y Z, Xiao T F, Ning Z P, et al. Cadmium and selected heavy metals in soils of Jianping area in Wushan County, the three gorges region: Distribution and source recognition[J]. Environmental Science, 2013, 34(6):2390-2398.
|
[49] |
宋波, 张云霞, 庞瑞, 等. 广西西江流域农田土壤重金属含量特征及来源解析[J]. 环境科学, 2018, 39(9):4317-4326.
|
[49] |
Song B, Zhang Y X, Pang R, et al. Analysis of characteristics and sources of heavy metals in farmland soils in the Xijiang river draining of Guangxi[J]. Environmental Science, 2018, 39(9):4317-4326.
|
[50] |
陆景冈. 土壤地质学[M]. 北京: 地质出版社, 2006:9-33.
|
[50] |
Lu J G. Soil geology[M]. Beijing: Geological Publishing House, 2006:9-33.
|
[51] |
陈天培, 彭镇芳, 韩文华, 等. 腾冲幅G-47-27盈江幅G-47-26 1/20万区域地质调查报告[R]. 玉溪:云南地质矿产局区域地质调查队, 1982:39-40.
|
[51] |
Chen T P, Peng Z F, Han W H, et al. Tengchong map-sheet G-47-27 Yingjiang map-sheet G-47-26 1∶200,000 Regional Geological Survey Report [R]. Yuxi: Regional Geological Survey Team of Yunnan Bureau of Geology and Mineral Resources, 1982:39-40.
|
[52] |
杨宋玲, 李方林, 黄建军, 等. 碳酸盐岩风化过程中次生富集作用对土壤地球化学异常评价的影响——以浙江下铜山铅锌异常评价为例[J]. 物探与化探, 2015, 39(6):1124-1131.
|
[52] |
Yang S L, Li F L, Huang J J, et al. The influence of the carbonate weathering secondary enrichment on soil geochemical anomaly evaluation: A case study of the evaluation of the Xiatong Mountain lead and zinc anomaly in Zhejiang province[J]. Geophysical and Geochemical Exploration, 2015, 39(6):1124-1131.
|
[53] |
肖高强, 向龙洲, 宗庆霞, 等. 云南省盈江县旧城—姐冒地区 1∶5 万土地质量地球化学调查评价成果报告[R]. 昆明: 云南省地质调查院, 2019.
|
[53] |
Xiao G Q, Xiang L Z, Zong Q X, et al. 1∶50,000 land quality geochemical survey and evaluation results report in Jiucheng-Jiemao area, Yingjiang County, Yunnan Province[R]. Kunming: Yunnan Provincial Geological Survey Institute, 2019.
|
[1] |
LI Sheng-Qing. Speciation and distribution of heavy metals in sediments in Haihe River Basin and their effects on ecological risk assessment[J]. Geophysical and Geochemical Exploration, 2022, 46(3): 781-786. |
[2] |
Gao-Qiang XIAO, Qing-Xia ZONG, Long-Zhou XIANG, Yan DAO, Yong-Qiang XU. Geochemical characteristics and influencing factors of Selenium in soils and agricultural products in the Jiucheng-Jiemao area, Yingjiang County, Yunnan Province[J]. Geophysical and Geochemical Exploration, 2020, 44(2): 412-418. |
|
|
|
|