|
|
The application of ANSYS to TEM 3D forward modeling |
ZHI Qing-Quan1,2( ), WU Jun-Jie1,2, WANG Xing-Chun1,2, SUN Huai-Feng3, YANG Yi1,2, ZHANG Jie1,2, DENG Xiao-Hong1,2, CHEN Xiao-Dong1,2, DU Li-Ming4 |
1. Institute of Geophysical and Geochemical Exploration, Langfang 065000, China 2. Laboratory of Geophysical EM Probing Technologies, MLR, Langfang 065000, China 3. Laboratory of Earth Electromagnetic Exploration, Shandong University, Jinan 250061, China 4. Geological Exploration Institute of Shandong Zhengyuan, Jinan 250101, China |
|
|
Abstract The forward modeling is an effective way to study the characteristics of transient electromagnetic (TEM) responses. The high precision and fast 3D forward modeling technology is a hot spot in the study of TEM forward modeling. The multiphysics module in ANSYS software is suitable for the forward modeling of TEM. In this paper, the application method of ANSYS software in TEM 3D forward modeling is introduced by some model examples, including the preprocessing, loading, solution setting and post-processing. The numerical results show that the simulation of TEM forward modeling by using ANSYS software has high accuracy. The TEM forward modeling using ANSYS can improve the efficiency of forward simulation calculation and provide a strong support for analyzing and understanding the characteristics of TEM response.
|
Received: 17 September 2020
Published: 20 August 2021
|
|
|
|
|
|
The diagram of TEM model
|
序号 | 单元类型 | 选项 | 对应介质 | 1 | Solid236 | Az-VOLT自由度 | 地层 | 2 | Solid236 | Az自由度,无涡流 | 线圈、空气 |
|
The element type
|
序号 | 电阻率/(Ω·m) | 相对磁导率 | 对应介质 | 1 | 100 | 1 | 地层 | 2 | 10-7 | 1 | 线圈 | 3 | ∞ | 1 | 空气 |
|
The material attribute
|
|
The comparison diagram of ANSYS and analytical solution of homogeneous half-space
|
|
The comparison diagram of ANSYS and analytical solution of H-type model
|
|
The diagram of single anomalous body model
|
|
The multi-channel graph of principal section
|
[1] |
刘树才, 刘志新, 姜志海. 瞬变电磁法在煤矿采区水文勘探中的应用[J]. 中国矿业大学学报, 2005,34(4):414-417.
|
[1] |
Liu S C, Liu Z X, Jiang Z H. Application of TEM in hydrogeological prospecting of mining district[J]. Journal of China University of Mining & Technology, 2005,34(4):414-417.
|
[2] |
薛国强, 李貅, 底青云. 瞬变电磁法理论与应用研究进展[J]. 地球物理学进展, 2007,22(4):1195-1200.
|
[2] |
Xue G Q, Li X, Di Q Y. The progress of TEM in theory and application[J]. Progress in Geophysics, 2007,22(4):1195-1200.
|
[3] |
杨海燕, 岳建华, 王梦倩, 等. 矿井瞬变电磁法中多匝回线电感对目标体探测的影响[J]. 物探与化探, 2007,31(1):34-37.
|
[3] |
Yang H Y, Yue J H, Wang M Q, et al. The influence of the induction of multi-turn coils for TEM on the detection of buried objects in underground mines[J]. Geophysical and Geochemical Exploration, 2007,31(1):34-37.
|
[4] |
范涛, 王秀臣, 李貅, 等. 瞬变电磁方法在探测煤矿浅层高阻采空区中的应用[J]. 西北地质, 2010,43(2):156-162.
|
[4] |
Fan T, Wang X C, Li X, et al. Application of TEM in detecting goal of coal mine with high-resistivity and shallow-layer[J]. Northwestern Geology, 2010,43(2):156-162.
|
[5] |
智庆全, 武军杰, 王兴春, 等. 三分量定源瞬变电磁解释技术及其在金属矿区的实验[J]. 物探与化探, 2016,40(4):798-803.
|
[5] |
Zhi Q Q, Wu J J, Wang X C, et al. Three-component interpretation technique of fixed source TEM and its experimental application in metallic ore district[J]. Geophysical and Geochemical Exploration, 2016,40(4):798-803.
|
[6] |
闫述, 薛国强, 陈明生. 大回线源瞬变电磁响应理论研究回顾及展望[J]. 地球物理学进展, 2011,26(3):941-947.
|
[6] |
Yan S, Xue G Q, Chen M S. Review and perspective of theoretical study on Large-loop TEM response[J]. Progress in Geophysics, 2011,26(3):941-947.
|
[7] |
李建慧, 朱自强, 曾思红, 等. 瞬变电磁法正演计算进展[J]. 地球物理学进展, 2012,27(4):1393-1400.
|
[7] |
Li J H, Zhu Z Q, Zeng S H, et al. Progress of forward computation in transient electromagnetic method[J]. Progress in Geophysics, 2012,27(4):1393-1400.
|
[8] |
殷长春, 刘斌. 瞬变电磁法三维问题正演及激电效应特征研究[J]. 地球物理学报, 1994,37(s2):486-492.
|
[8] |
Yin C C, Liu B. The research on the 3D TDEM modeling and IP effect[J]. Chinese Journal of Geophysics, 1994,37(s2):486-492.
|
[9] |
唐新功, 胡文宝, 严良俊. 层状地层中三维薄板的瞬变电磁响应[J]. 石油地球物理勘探, 2000,35(5):628-633, 650.
|
[9] |
Tang X G, Hu W B, Yan L J. Transient electromagnetic response to a 3-D thin plate in a layered earth[J]. Oil Geophysical Prospecting, 2000,35(5):628-633, 650.
|
[10] |
孙怀凤, 李貅, 李术才, 等. 考虑关断时间的回线源激发TEM三维时域有限差分正演[J]. 地球物理学报, 2013,56(3):1049-1064.
|
[10] |
Sun H F, Li X, Li S C, et al. Three-dimensional FDTD modeling of TEM excited by a loop source considering ramp time[J]. Chinese Journal of Geophysics, 2013,56(3):1049-1064.
|
[11] |
李展辉, 黄清华. 复频率参数完全匹配层吸收边界在瞬变电磁法正演中的应用[J]. 地球物理学报, 2014,57(4):1292-1299.
|
[11] |
Li Z H, Huang Q H. Application of the complex frequency shifted perfectly matched layer absorbing boundary conditions in transient electromagnetic method modeling[J]. Chinese Journal of Geophysics, 2014,57(4):1292-1299.
|
[12] |
Wang T, Hohmann G W. A finite-difference, time-domain solution for three-dimensional electromagnetic modeling[J]. Geophysics, 1993,58(6):797-809.
|
[13] |
Yin C C, Qi Y F, Liu Y H, et al. 3D time-domain airborne EM forward modeling with topography[J]. Journal of Applied Geophysics, 2016,134(1):11-22.
|
[14] |
Cai H Z, Hu X Y, Xiong B, et al. Finite-element time-domain modeling of electromagnetic data in general dispersive medium using adaptive Padé series[J]. Computers & Geosciences, 2017,109:194-205.
|
[15] |
齐彦福, 殷长春, 刘云鹤, 等. 基于瞬时电流脉冲的三维时间域航空电磁全波形正演模拟[J]. 地球物理学报, 2017,60(1):369-382.
|
[15] |
Qi Y F, Yin C C, Liu Y H, et al. 3D time-domain airborne EM full-wave forward modeling based on instantaneous current pulse[J]. Chinese Journal of Geophysics, 2017,60(1):369-382.
|
[16] |
周建美, 刘文韬, 李貅, 等. 双轴各向异性介质中回线源瞬变电磁三维拟态有限体积正演算法[J]. 地球物理学报, 2018,61(1):368-378.
|
[16] |
Zhou J M, Liu W T, Li X, et al. Research on the 3D mimetic finite volume method for loop-source TEM response in biaxial anisotropic formation[J]. Chinese Journal of Geophysics, 2018,61(1):368-378.
|
[17] |
Li J H, Lu X S, Colin G F, et al. A finite-element time-domain forward solver for electromagnetic methods with complex-shaped loop sources[J]. Geophysics, 2018,83(3):117-132.
|
[18] |
唐兴伦, 范群波, 张朝晖, 等. ANSYS工程应用教程—热与电磁学篇[M]. 北京: 中国铁道出版社, 2003.
|
[18] |
Tang X L, Fan Q B, Zhang C H, et al. ANSYS engineering applications tutorials—thermal and electromagnetics [M]. Beijing: China Railway Publishing House, 2003.
|
[19] |
ANSYS INC. ANSYS low-frequency electromagnetic analysis guide [R]. 2004.
|
[20] |
汤井田, 肖晓, 杜华坤, 等. ANSYS在直流电法正演中的应用[J]. 地球物理学进展, 2006,21(3):987-992.
|
[20] |
Tang J T, Xiao X, Du H K, et al. The application of ANSYS in direct current method forward modeling[J]. Progress in Geophysics, 2006,21(3):987-992.
|
[21] |
张军, 赵莹, 马炳镇. 基于ANSYS的矿井直流电场研究[J]. 地球物理学进展, 2012,27(6):2609-2616.
|
[21] |
Zhang J, Zhao Y, Ma B Z. Study of DC electric-field of mine based on ANSYS[J]. Progress in Geophysics, 2012,27(6):2609-2616.
|
[22] |
高卫富, 韩进, 刘玉, 等. 基于ANSYS全空间直流电法异常体正演模拟[J]. 地球物理学进展, 2016,31(5):2089-2094.
|
[22] |
Gao W F, Han J, Liu Y, et al. Research on the forward model DC method of abnormal body in full space based on ANSYS[J]. Progress in Geophysics, 2016,31(5):2089-2094.
|
[23] |
王宁, 苏新兵, 马斌麟, 等. 网格类型对流场计算效率和收敛性的影响[J]. 空军工程大学学报:自然科学版, 2018,19(1):9-14.
|
[23] |
Wang N, Su X B, Ma B L, et al. A Study of influence of mesh type on fluid computational efficiency and convergence[J]. Journal of Air Force Engineering University:Natural Science Edition, 2018,19(1):9-14.
|
[24] |
翟建军, 乔新宇, 丁秋林. 基于扫掠法的六面体网格生成算法及实现[J]. 南京航空航天大学学报, 2007,39(1):71-74.
|
[24] |
Zhai J J, Qiao X Y, Ding Q L. Research and implementation of hexahedral mesh generation algorithm based on sweeping[J]. Journal of Nanjing University of Aeronautics & Astronautics, 2007,39(1):71-74.
|
|
|
|