|
|
The application of EM clustering method to the determination of stream sediment geochemical anomalies in areas with variable lithologies |
SUN Yao-Yao( ), HAO Li-Bo, ZHAO Xin-Yun, LU Ji-Long, MA Cheng-You, WEI Qiao-Qiao( ) |
College of Geo-Exploration Science and Technology,Jilin University,Changchun 130026,China |
|
|
Abstract The separation of anomalies from backgrounds is a critical step in geochemical prospecting. However, the determination of stream sediment geochemical anomalies is always affected by lithologic backgrounds in areas with variable lithologies. If this influence is not eliminated prior to anomaly determination, some serious errors may occur. In fact, a problem of lithologic background is essentially a problem of multiple population, which can be effectively solved by the clustering method based on the Expectation-Maximization (EM) algorithm. In this study, the authors applied the EM clustering method to a geochemical data set from a 1∶200,000 scale stream sediment survey, and then discussed the influence of separating multiple populations on anomaly determination. A practical example demonstrates that geochemical anomalies of stream sediments in lithologically complex regions can be determined in a more reasonable way by using the EM clustering method. This is mainly reflected in two aspects: on the one hand, strong but false anomalies can be eliminated, and on the other hand, weak but important anomalies can be uncovered.
|
Received: 19 January 2020
Published: 29 December 2020
|
|
Corresponding Authors:
WEI Qiao-Qiao
E-mail: yaoyaos19@mails.jlu.edu.cn;weiqiaoqiao888 @sina.com
|
|
|
|
|
Schematic geological map of the study area
|
|
The frequency distributions of Al2O3,K2O, Ti and MgO of stream sediment samples
|
|
Relationship between number of clusters and AIC values
|
|
Optimal classification map
|
|
The frequency distributions of Al2O3,K2O, Ti and MgO of separated samples
|
|
Geochemical anomalies of W and Sn delineated by traditional method(left) and the EM method(right)
|
背景值 | 第一类样品 (391) | 第二类样品 (52) | 第三类样品 (278) | 第四类样品 (259) | 第五类样品 (70) | w(W)/10-6 | 3.4 | 55 | 4.9 | 2.7 | 18 | w(Sn)/10-6 | 5.2 | 31 | 6.2 | 2.7 | 17 |
|
Background values of W and Sn of separated samples
|
[1] |
李宝强, 孙泽坤. 区域地球化学异常信息提取方法研讨[J]. 西北地质, 2004,37(1):102-108.
|
[1] |
Li B Q, Sun Z K. Study on the method of geochemical anomalies analysis[J]. Northwestern Geology, 2004,37(1):102-108.
|
[2] |
程志中, 谢学锦. 岩石中元素背景值变化对地球化学成矿预测的影响[J]. 中国地质, 2006,33(2):411-417.
|
[2] |
Cheng Z Z, Xie X J. Influence of variation in element background values in rocks on metallogenic prognosis in geochemical maps[J]. Geology in China, 2006,33(2):411-417.
|
[3] |
郝立波, 李巍, 陆继龙. 确定岩性复杂区的地球化学背景与异常的方法[J]. 地质通报, 2007,26(12):1531-1535.
|
[3] |
Hao L B, Li W, Lu J L. Method for determining the geochemical background and anomalies in areas with complex lithology[J]. Geological Bulletin of China, 2007,26(12):1531-1535.
|
[4] |
Hao L B, Zhao X Y, Zhao Y Y, et al. Determination of the geochemical background and anomalies in areas with variable lithologies[J]. Journal of Geochemical Exploration, 2014,139:177-182.
|
[5] |
Zhao X Y, Hao L B, Lu J L, et al. Origin of skewed frequency distribution of regional geochemical data from stream sediments and a data processing method[J]. Journal of Geochemical Exploration, 2018,194:1-8.
|
[6] |
周蒂. 分区背景校正法及其对化探异常圈定的意义[J]. 物探与化探, 1986,10(4):263-273.
|
[6] |
Zhou D. Unit-wise adjustment of geochemiacl background data and its significance in geochemical anomaly delineation[J]. Geophysical and Geochemical Exploration, 1986,10(4):263-273.
|
[7] |
Vistelius A B. The skew frequency distributions and the fundamental law of the geochemical processes[J]. The Journal of Geology, 1960,68:1-22.
|
[8] |
Govett G J S, Goodfellow W D, Chapman R P, et al. Exploration geochemistry—Distribution of elements and recognition of anomalies[J]. Mathematical Geology, 1975,7:415-446.
|
[9] |
郝立波, 马力, 赵海滨. 岩石风化成土过程中元素均一化作用及机理:以大兴安岭北部火山岩区为例[J]. 地球化学, 2004,33(2):131-138.
|
[9] |
Hao L B, Ma L, Zhao H B. Elemental homogenization during weathering and pedogenesis of volcanic rocks from North Da Hinggan Ling[J]. Geochimica, 2004,33(2):131-138.
|
[10] |
郝立波, 陆继龙, 马力. 浅覆盖区土壤化学成分与基岩化学成分的关系及其意义——以大兴安岭北部地区为例[J]. 中国地质, 2005,32(3):477-482.
|
[10] |
Hao L B, Lu J L, Ma L. Relation between the chemical compositions of residual soils and bedrocks in shallow overburden areas and its significance:A case study of the northern Da Hinggan Mountains[J]. Geology in China, 2005,32(3):477-482.
|
[11] |
Reimann C, Filzmoser P, Garrett R. Background and threshold: critical comparison of methods of determination[J]. Science of the Total Environment, 2005,346:1-16.
|
[12] |
Ahrens L H. A fundamental law of geochemistry[J]. Nature, 1953,172:1148.
|
[13] |
Miesch A T, Chapman R P. Log transformation in geochemistry[J]. Mathematical Geology, 1977,9:191-198.
|
[14] |
Hoyle M H. Transformations: An introduction and a bibliography[J]. International Statistical Reviews, 1973,41:203-223.
|
[15] |
Box G E P, Cox D R. An analysis of transformations[J]. Journal of the Royal Statistical Society:Series B, 1964,26:211-252.
|
[16] |
Stanley C. Numerical transformation of geochemical data: 1. Maximizing geochemical contrast to facilitate information extraction and improve data presentation[J]. Geochemistry: Exploration, Environment, Analysis, 2006,6:69-78.
|
[17] |
Cheng Q M, Xu Y G, Grunsky E. Integrated spatial and spectrum method for geochemical anomaly separation[J]. Natural Resources Research, 2000,9:43-51.
|
[18] |
Cheng Q M. A new model for quantifying anisotropic scale invariance and for decomposition of mixing patterns[J]. Mathematical Geology, 2004,36:345-360.
|
[19] |
谢淑云, 鲍征宇. 地球化学场的连续多重分形模式[J]. 地球化学, 2002,31(2):191-200.
|
[19] |
Xie S Y, Bao Z Y. Continuous multifractal model of geochemical fields[J]. Geochimica, 2002,31(2):191-200.
|
[20] |
Whitehead R E S, Govett G J S. Exploration rock geochemistry—detection of trace element halos at heath steele mines (N.B., Canada) by discriminant analysis[J]. Journal of Geochemical Exploration, 1974,3:371-386.
|
[21] |
Sinclair A J. Selection of threshold values in geochemical data using probability graphs[J]. Journal of Geochemical Exploration, 1974,3:129-149.
|
[22] |
Dempster A P, Laird N M, Rubin D B. Maximum likelihood from incomplete data via the EM Algorithm[J]. Journal of the Royal Statistical Society:Series B, 1977,39:1-38.
|
[23] |
Akaike H. Statistical predictor identification[J]. Annals of the Institute of Statistical Mathematics, 1970,22:203-217.
|
[1] |
Wei-Yan LU, Ming-Long DU, Shan-Qing JI, Chuan LIU, Xiang-Yuan MENG, Shi XING, Zi-Jiang LIU. Geological anomaly characteristics of Liangjiayu area in Hebei Province and their prospecting significance[J]. Geophysical and Geochemical Exploration, 2020, 44(4): 719-726. |
[2] |
Wang-Fei WENG, De-En WANG, Bang-Min WANG, Yong DING, Yong-Jun WANG. Geochemical characteristics of stream sediments and prospecting direction in Qimen-Yixian area of Anhui Province[J]. Geophysical and Geochemical Exploration, 2020, 44(1): 1-12. |
|
|
|
|