|
|
The application of post-stack inversion technology to the prediction of fracture and pore reservoir in Yangshuiwu buried hill |
WANG Ya1,2( ), YI Yuan-Yuan1, WANG Cheng-Quan3, WANG Meng-Hua3, YANG Zhou-Peng3, ZHANG Hong-Wen3, WANG Sheng-Liang3, JIA Jing3 |
1.School of Geophysics & Oil Resources,Yangtze University,Wuhan 434023,China 2.Economic Reserach Institute of Huabei Oilfield Company,Renqiu 062552,China 3.Exploration and Development Research Institute of Huabei Oilfield Company,Renqiu 062552,China |
|
|
Abstract The Ordovician carbonate reservoirs in Yangshuiwu buried hill are widely distributed,and fractured porous reservoirs are well developed. But due to its deep reservoir,low resolution of seismic data, and unclear acoustic logging characteristics of reservoirs,it is difficult to achieve effective reservoir distribution prediction by conventional acoustic inversion.Based on the analysis of logging response characteristics of drilled reservoirs,the resistivity curves sensitive to effective reservoir response are selected and reconstructed with acoustic curves.The resistivity pseudo-acoustic curves with acoustic background are obtained.Then,the distribution prediction of effective reservoirs is realized based on post-stack logging constrained model inversion technology.Finally,the inversion of reservoir parameters based on neural network simulation technology is carried out by using the porosity curve and the pseudo-acoustic impedance curve drilled to realize the prediction of the planar distribution of porosity in this study area.Practice has proved that the forecasting method is effective and practical,and has a good application effect in the buried hill area of Yangshuiwu.
|
Received: 02 September 2019
Published: 26 October 2020
|
|
|
|
|
|
Statistical map of dolomite content in different wells
|
储层 级别 | 类型 | 常规测井响应 | 成像测井响应 | 总孔隙度/ % | 电阻率/ (Ω·m) | 电阻差异/ Ω | 裂缝 孔隙度/% | 成像特征 | 孔隙度谱特征 | 一类 储层 | 裂缝-孔隙型 | ≥3 | <700 | 0.2~0.4 | >0.002 | 裂缝、溶孔共生,较发育 | 孔隙度谱分布宽,呈中孔径分布 | 裂缝型 | 2~3 | <1000 | >0.4 | 裂缝规模大、连通性好;成组系发育、网状缝发育 | 谱型分布窄,呈单峰,呈中小孔径分布 | 二类 储层 | 裂缝-孔隙型 | ≥3 | <1500 | 0.2~0.4 | >0.001 | 裂缝较发育 | 谱型展布宽 | 裂缝型 | 2~3 | <2000 | >0.4 | 裂缝较发育 | 谱型展布窄,以中小孔径为主 | 孔隙型 | ≥4 | <1000 | <0.2 | 裂缝不发育 | 谱型展布宽,多以大孔径分布 | 三类 储层 | 裂缝-孔隙型 | ≤3 | 1500~3000 | <0.2 | <0.001 | 裂缝欠发育 | 谱型展布窄,以中小孔径为主 | 裂缝型 | 2~3 | 2000~4000 | 0.2~0.3 | 裂缝欠发育 | |
|
Log reservoir evaluation classification table
|
|
Intersection diagram of reservoir classification and logging curve
|
|
Curve intersection analysis diagram
|
|
Multiwell profile of logging constraint model inversion a—well 1-well 2-well 3 continuous well inversion profile;b—well 5-well 4-well W1 continuous well inversion profile
|
|
Total thickness plane of class I and II in different reservoir segments a—Fengfeng group;b—upper Majiagou group;c—lower Majiagou group;d—Liangjiashan group
|
储层段 | 峰峰组 | 上马家沟组 | 下马家沟组 | 亮甲山组 | 井号 | 1 | 2 | 3 | 4 | 5 | W1 | 1 | 2 | 3 | 4 | 5 | W1 | 1 | 2 | 3 | 4 | 5 | W1 | 1 | 2 | 3 | 4 | 5 | W1 | 预测 | 26.5 | 60.1 | 12.3 | 32.4 | 35.6 | 30.8 | 92.3 | 27.6 | 12.1 | 32.5 | 26.8 | 21.6 | 22.4 | 43.2 | 24.3 | 79.2 | 25.1 | 6.9 | | 11.5 | 22.8 | 6.9 | 35.2 | 17.5 | 解释 | 27.8 | 64.4 | 12.8 | 27.8 | 40 | 31.2 | 97.2 | 28.1 | 15.4 | 37.4 | 31.8 | 22.2 | 21.8 | 40.8 | 21.8 | 82.4 | 24.2 | 6.4 | | 12.8 | 23.8 | 8.4 | 35.3 | 19 | 误差 | 1.3 | 4.3 | 0.5 | -4.6 | 4.4 | 0.4 | 4.9 | 0.5 | 3.1 | 4.9 | 5 | 0.6 | -0.6 | -2.4 | -2.3 | 3.2 | -0.9 | -0.5 | | 1.3 | 1 | 1.5 | 0.1 | 1.5 |
|
Statistical table of total reservoir thickness of class I and IIm
|
|
Relationship between porosity and wave impedance
|
|
The plane of peservoir porosity prediction in different reservoir segments a—Fengfeng group;b—upper Majiagou group;c—lower Majiagou group;d—Liangjiashan group
|
储层段 | 峰峰组 | 上马家沟组 | 下马家沟组 | 亮甲山组 | 井号 | 1 | 2 | 3 | 4 | 5 | W1 | 1 | 2 | 3 | 4 | 5 | W1 | 1 | 2 | 3 | 4 | 5 | W1 | 1 | 2 | 3 | 4 | 5 | W1 | 预测 | 2.01 | | 3.02 | | 2.8 | 2.7 | 2.5 | | 3.3 | | 2.8 | 3.1 | 4.2 | | 2.05 | | 3.2 | 1.8 | | | 3.4 | | | 1.8 | 解释 | 2.09 | | 3.14 | | 2.97 | 2.95 | 2.68 | | 3.57 | | 2.6 | 3.3 | 4.57 | | 2.21 | | 3.3 | 1.88 | | | 3.59 | | | 1.63 | 误差 | 0.08 | | 0.12 | | 0.17 | 0.25 | 0.18 | | 0.27 | | -0.2 | 0.2 | 0.37 | | 0.16 | 0 | 0.1 | 0.08 | | | 0.19 | 0 | 0 | -0.17 |
|
Error statistics for predicting porosity%
|
[1] |
杜金虎, 何海清, 赵贤正, 等. 渤海湾盆地廊固凹陷杨税务超深超高温奥陶系潜山油气勘探重大突破实践与启示[J]. 中国石油勘探, 2017,22(2):1-12.
|
[1] |
Du J H, He H Q, Zhao X Z, et al. Significant exploration breakthrough in Yangshuiwu ultra-deep and ultra-high temperature Ordovician buried-hill in Langgu sag,Bohai Bay Basin[J]. China Petroleum Exploration, 2017,22(2):1-12.
|
[2] |
赵贤正, 金凤鸣, 王权, 等. 冀中坳陷隐蔽深潜山及潜山内幕油气藏的勘探发现与认识[J]. 中国石油勘探, 2014,19(1):10-21.
|
[2] |
Zhao X Z, Jin F M, Wang Q, et al. Exploration and discovery of subtle deep buried hill and buried hill inner-curtain hydrocarbon reservoir in Jizhong Sag[J]. China Petroleum Exploration, 2014,19(1):10-21.
|
[3] |
焦立波, 杨希冰, 邓勇, 等. 涠西南凹陷构造演化特征及潜山裂缝预测[J]. 长江大学学报:自科科学版, 2018,15(7):9-13.
|
[3] |
Jiao L B, Yang X B, Deng Y, et al. The characteristics of structural evolution and fracture prediction of buried hill in southwest Wei Sag[J]. Journal of Yangtze University:Natural Science Edition, 2018,15(7):9-13.
|
[4] |
童凯军, 李波, 戴卫华, 等. 渤海海域变质岩潜山油藏稀井网高效开发技术[J]. 石油勘探与开发, 2017,44(4):590-599.
|
[4] |
Tong K J, Li B, Dai W H, et al. Sparse well pattern and high-efficient development of metamorphic buried hills reservoirs in Bohai Sea area,China[J]. Petroleum Exploration and Development, 2017,44(4):590-599.
|
[5] |
束宁凯, 汪新文, 王金铸, 等. 义和庄地区潜山内幕构造演化特征及其控藏作用[J]. 油气地质与采收率, 2017,24(3):25-29.
|
[5] |
Shu N K, Wang X W, Wang J Z, et al. Tectonic evolution characteristics of inner buried hills in Yihezhuang area and its controlling effect on the hydrocarbon accumulation[J]. Petroleum Geology and Recovery Efficiency, 2017,24(3):25-29.
|
[6] |
胡小强, 万晓明, 简晓玲, 等. 北黄海盆地某区块火成岩地震识别与预测[J]. 世界地质, 2017,36(1):246-254.
|
[6] |
Hu X Q, Wan X M, Jian X L, et al. Igneous rock identification and prediction with seismic data of a block in the North Yellow Sea Basin[J]. Global Geology, 2017,36(1):246-254.
|
[7] |
凌云, 杜向东, 曹思远. FAVO 反演技术及其在深水砂岩储层中的应用[J]. 物探与化探, 2018,42(1):161-165.
|
[7] |
Ling Y, Du X D, Cao S Y. FAVO inversion technique and its application to deep-water sandstone reservoir[J]. Geophysical and Geochemical Exploration, 2018,42(1):161-165.
|
[8] |
刁新东, 李映涛, 顾伟欣, 等. 三角洲水下分流河道砂体地震预测方法研究——以塔河油田三叠系河道砂岩为例[J]. 物探与化探, 2018,42(3):569-575.
|
[8] |
Diao X D, Li Y T, Gu W X, et al. A study of seismic prediction method of underwater distributary channel sandbody in delta:A case study of the Tahe Oilfied[J]. Geophysical and Geochemical Exploration, 2018,42(3):569-575.
|
[9] |
朱超, 刘占国, 杨少勇, 等. 利用相控分频反演预测英西湖相碳酸盐岩储层[J]. 石油地球物理勘探, 2018,53(4):832-841.
|
[9] |
Zhu C, Liu Z G, Yang S Y, et al. Lacustrine carbonate reservoir prediction in Yingxi,Qaidam Basin with the facies-constrained and segmented-frequency-band inversion[J]. OGP, 2018,53(4):832-841.
|
[10] |
章雄, 张本健, 梁虹, 等. 波形指示叠前地震反演方法在致密含油薄砂层预测中的应用[J]. 物探与化探, 2018,42(3):545-554.
|
[10] |
Zhang X, Zhang B J, Liang H, et al. The application of pre-stack inversion based on seismic waveform indicator to the prediction of compact and thin oil-bearing sand layer[J]. Geophysical and Geochemical Exploration, 2018,42(3):545-554.
|
[11] |
吴淑玉, 陈建文, 刘俊, 等. 叠前同时反演技术在南黄海崂山隆起储层预测中的应用[J]. 海洋地质与第四纪地质, 2018,38(3):162-174.
|
[11] |
Wu S Y, Chen J W, Liu J, et al. Application of pre-stack simultaneous inversion in the reservoir prediction in South Yellow Sea basin[J]. Marine Geology & Quaternary Geology, 2018,38(3):162-174.
|
[12] |
蒋学峰. 叠前反演技术在致密油甜点预测中的应用[J]. 石油化工高等学校学报, 2018,31(3):76-80.
|
[12] |
Jiang X F. Application of pre-stack inversion technology in tight oil dessert prediction[J]. Journal of Petrochemical Universities, 2018,31(3):76-80.
|
[13] |
任丽丹, 王鹏, 刘成芳, 等. 叠前AVO反演技术在顺南地区碳酸盐岩储层含油气性预测中的应用[J]. 工程地球物理学报, 2018,15(3):292-298.
|
[13] |
Ren L D, Wang P, Liu C F, et al. The application of pre-stack AVO inversion technology to the oil-bearing prediction of carbonate reservoirs in Shunnan area[J]. Chinese Journal of Engingeering Geophysics, 2018,15(3):292-298.
|
[14] |
陈德元, 张保卫, 岳航羽, 等. 基于特征曲线构建的地质统计反演在薄砂体预测中的应用[J]. 物探与化探, 2018,42(5):999-1005.
|
[14] |
Chen D Y, Zhang B W, Yue H Y, et al. The application of geostatistical inversion based on characteristic curve structuring technology to thin sand body reservoir prediction[J]. Geophysical and Geochemical Exploration, 2018,42(5):999-1005.
|
[15] |
杨帅, 芦俊, 杨春, 等. 含裂缝致密砂岩多波AVO响应分析[J]. 石油地球物理勘探, 2018,53(4):798-804.
|
[15] |
Yang S, Lu J, Yang C, et al. Multi-wave AVO responses in fractured tight sand-stone[J]. OGP, 2018,53(4):798-804.
|
[16] |
何登发, 崔永谦, 张煜颖, 等. 渤海湾盆地冀中坳陷古潜山的构造成因类型[J]. 岩石学报, 2017,33(4):1338-1356.
|
[16] |
He D F, Cui Y Q, Zhang Y Y, et al. Structural genetic types of paleo-buried hill in Jizhong depression,Bohai Bay Basin[J]. Acta Petrologica Sinica, 2017,33(4):1338-1356.
|
[17] |
赵贤正, 金凤鸣, 王权, 等. 冀中坳陷隐蔽深潜山及潜山内幕油气藏的勘探发现与认识[J]. 中国石油勘探, 2014,19(1):10-21.
|
[17] |
Zhao X Z, Jin F M, Wang Q, et al. Exploration and discovery of subtle deep buried hill and buried hill inner-curtain hydrocarbon reservoir in Jizhong Sag[J]. China Petroleum Exploration, 2014,19(1):10-21.
|
[18] |
魏文希, 师素珍, 孙超, 等. 拟声波反演技术在识别煤层顶底板砂泥岩中的应用[J]. 物探与化探, 2016,40(1):220-224.
|
[18] |
Wei W X, Shi S Z, Sun C, et al. Application of pseudo-acoustic inversion technique in identifying sandstone and mudstone of coal seam roof and floor[J]. Geophysical and Geochemical Exploration, 2016,40(1):220-224.
|
[19] |
桂金咏, 高建虎, 雍学善, 等. 基于双相介质理论的储层参数反演方法[J]. 地球物理学报, 2015,58(9):3424-3438.
|
[19] |
Gui J Y, Gao J H, Yong X S, et al. Inversion of reservoir parameters based on dual-phase media theory[J]. Progress in Geophysics, 2015,58(9):3424-3438.
|
|
|
|