|
|
A technical workflow of fracture prediction with curvature-related attributes and its applications |
CHEN Zhi-Gang1( ), MA Wen-Jie2, ZHAO Hong-Zhong1, XU Feng1, CUI Quan-Zhang1, MA Hui1, SUN Xing1 |
1.BGP Geological Research Center,Zhuozhou 072751,China 2.China National Oil and Gas Exploration and Development Corporation(CNODC),Beijing 100034,China |
|
|
Abstract Based on the curvature attribute,this paper proposes for the first time a set of processes for predicting "fracture zones-fracture development direction-fracture initiation".Firstly,the curvature calculation of the seismic data is carried out to predict the developing area of the fractured reservoir;then,the rose diagrams of the curvature data are calculated and compared with the rose diagrams from the log data to determine the direction of fracture;two dominant directions of fracture development are selected according to the directions of fracture development,and then the intensity properties of the two dominant directions of the curvature volume are calculated according to the main directions of fracture development;finally,the two azimuth intensity attributes are intersected with productivity respectively,and the one with the better correlation is the opening azimuth of the fractures.The above method was applied to K oilfield in Kazakh.The authors made the prediction that the fracture-vug reservoir is mainly developed in the eastern part of K oilfield,while the fracture reservoir is mainly developed in the western part,and that there are mainly two groups of fractures developed in the NW and the NW direction,of which the opening property of the NE trend fractures is good in the north part,while the opening property of the NW trend fractures is good in the south part.According to the prediction results,commercial oil flow was detected in the two proposed wells.
|
Received: 12 August 2019
Published: 26 October 2020
|
|
|
|
|
|
Workflow of the fracture prediction technique
|
|
Structure map,production distribution map and corresponding seismic section a—structure map of study area;b—production distribution;c—seismic section marked with a black line in figure a
|
|
The pridiction result of fracture a—curvature slice along top buried hill;b—isopach map of the fracture-cave reservoirs;c—seismic section marked with a black line in figure a
|
|
Rose map prdicted with seismic data(a) and derived from FMI remark(b)
|
|
The prediction result of the fracture opening with azimuthal intensity a—azimuthal intensity in northeast trend;b—azimuthal intensity in northwest trend;c—combination of azimuthal intensity;d—azimuthal intensity versus production;e—section of combination of azimuthal intensity
|
[1] |
Hart B S, Pearson R A, Rawling G C. 3D seismic horizon-based approaches to fractures warm sweet spot definition in tight-gas reservoirs[J]. The Leading Edge, 2002,21:28-35.
|
[2] |
Narhari S R, Al-Kandari A L, Kidambi V K, et al. Understanding fractures through seismic data:North Kuwait case study [C]//Expanded Abstracts of the 79 th Annual SEG Meeting,Society of Exploration Geophysicists , 2009: 547-550.
|
[3] |
Guo Y, Zhang K, Marfurt K J. Seismic attribute illumination of Woodford Shale faults and fractures,Arkoma Basin[C]// Expanded Abstracts of the 80th Annual SEG Meeting,Society of Exploration Geophysicists, 2010: 1372-1376.
|
[4] |
Hennings P H, Olson J E, et al. Combining outcrop data and three-dimensional structural models to characterize fractured reservoirs:A example from Wyoming[J]. AAPG Bulletin, 2000,84:830-849.
|
[5] |
Nissen Carr, Marfurt K J, et al. Using 3D seismic volumetric curvature attributes to identify fracture trends in a depleted Mississippian carbonate reservoir: Implications for assessing candidates for CO2 sequestration[J] . AAPG Studies in Geology, 2009,59:297-319.
|
[6] |
崔立杰, 何幼斌, 王锦喜, 等. 基于层面的地震曲率属性在碳酸盐岩断裂预测中的应用[J]. 岩性油气藏, 2012,24(1):92-96.
|
[6] |
Cui L J, He Y B, Wang J X, et al. Application of seismic curvature based on horizon to carbonate fault prediction:An example of an area in Tabei, Tarim Basin[J]. Lithologic Reservoirs, 2012,24(1):92-96.
|
[7] |
王后金, 王嘹亮, 万晓明, 等. 黄海盆地中生界低渗储集层裂缝预测[J]. 新疆石油地质, 2014,35(3):268-272.
|
[7] |
Wang H J, Wang L L, Wan X M, et al. Fracture prediction of low permeability reservoirs of the Mesozoic in North Yellow Sea Basin[J]. Xinjiang Petroleum Geology, 2014,35(3):268-272.
|
[8] |
盛新丽. 基于三维地震曲率的小断裂识别方法[J]. 中国煤炭地质, 2018,30(S1):109-117.
|
[8] |
Sheng X L. Minor fault identification based on 3D seismic curvature[J]. Coal Geology of China, 2018,30(S1):109-117.
|
[9] |
王丹, 贾跃玮, 魏水建, 等. 新场须四段叠后裂缝综合预测[J]. 物探与化探, 2014,38(5):1038-1044.
|
[9] |
Wang D, Jia Y W, Wei S J, et al. The integrated poststack fracture prediction of Xusi formation in Xinchang survey[J]. Geophysical and Geochemical Exploration, 2014,38(5):1038-1044.
|
[10] |
曹润荣, 刘宗彦. 面曲率法—趋势面拟合法在裂缝预测中的应用[J]. 石油计算机应用, 2008,16(3):12-14.
|
[10] |
Cao R R, Liu Z Y. Application of curvature of face-trend surface fitting method in fracture prediction[J]. Computer Applications of Petroleum, 2008,16(3):12-14.
|
[11] |
刘德生, 冯小东, 马庆林, 等. 断层识别技术在福山凹陷朝阳地区的应用[J]. 石油地球物理勘探, 2017,52(s1):156-161.
|
[11] |
Liu D S, Feng X D, Ma Q L, et al. Fault identification in the Chaoyang area,Fushan sag[J]. OGP, 2017,52(s1):156-161.
|
[12] |
李勇, 朱江梅, 张文璨, 等. 基于相干算法的多尺度体曲率裂缝检测方法研究[J]. 矿物岩石, 2015,35(2):107-112.
|
[12] |
Li Y, Zhu J M, Zhang W C, et al. Study of detection method for multi-scale curvature fractures based on coherence algorithm[J]. Mineral Petrol, 2015,35(2):107-112.
|
[13] |
易院平, 桂志先, 冯舸, 等. 利用曲率属性进行小微断裂系统研究[J]. 科学技术与工程, 2017,17(11):175-182.
|
[13] |
Yi Y P, Gui Z X, Feng G, et al. The application of curvature properties in micro fracture system researching[J]. Science Technology and Engineering, 2017,17(11):175-182.
|
[14] |
刘昊娟, 张一陶, 朱峰. 裂缝储层地震预测技术在南川页岩气工区的应用[J]. 石化技术, 2018(3):150-151.
|
[14] |
Liu H J, Zhang Y T, Zhu F. Anticorrosion measures of fractured reservoir seismic prediction technique applied in Nanchuan shale gas area[J]. Petrochemical Industry Technology, 2018(3):150-151.
|
[15] |
刘松鸣, 武刚, 文晓涛, 等. 曲率方位加强技术在识别低序级断层中的应用[J]. 断块油气田, 2019,26(1):37-41.
|
[15] |
Liu S M, Wu G, Wen X T, et al. Application of curvature azimuth strengthening technology to low-level fault identification[J]. Fault-Block Oil & Gas Field, 2019,26(1):37-41.
|
[16] |
孔选林, 唐建明, 徐天吉. 曲率属性在川西新场地区裂缝预测中的应用[J]. 石油物探, 2011,50(5):517-520.
|
[16] |
Kong X L, Tang J M, Xu T J. Application of seismic curvature attribute to fracture prediction in Xinchang area,western Sichuan Depression[J]. Geophysical Prospecting for Petroleum, 2011,50(5):517-520.
|
[17] |
欧守波, 陈胜, 佟恺林, 等. 碳酸盐岩裂缝储层地震预测技术——以JLS地区茅口组为例[J]. 科技创新与应用, 2016,24:93-94.
|
[17] |
Ou S B, Chen S, Tong K L, et al. Fracture prediction technique of Carbonate based on seismic data-Maokou Formation of JLS block as a case[J]. Technology Innovation and Application, 2016,24:93-94.
|
[18] |
杨平, 李海银, 胡蕾, 等. 提高裂缝预测精度的解释性处理技术及其应用[J]. 石油物探, 2015,54(6):681-689.
|
[18] |
Yang P, Li H Y, Hu L, et al. Interpretative processing techniques and their application in improving fracture prediction accuracy[J]. Geophysical Prospecting for Petroleum, 2015,54(6):681-689.
|
[19] |
Roberts A. Curvature attributes and their application to interpreted horizons[J]. First Break, 2001,19:85-99.
|
[20] |
Bergbauer S T, Hennings M P. Improving curvature analyses of deformed horizons using scale-dependent filtering techniques[J]. AAPG Bulletin, 2003,87:1255-1272.
|
[21] |
Al-Dossary K J Marfurt. 3-D volumetric multispectral estimates of reflector curvature and rotation[J]. Geophysics, 2006,71:41-51.
|
[22] |
Rich J. Expanding the applicability of curvature attributes through clarification of ambiguities in derivation and terminology[C]// Expanded Abstracts of the 78th Annual SEG Meeting,Society of Exploration Geophysicists, 2008: 884-888.
|
[23] |
聂妍. 潜山微小断层的表征方法[J]. 中国科技论文, 2019,14(1):28-32.
|
[23] |
Nie Y. Research on small faults description of buried hill[J]. China Sciencepaper, 2019,14(1):28-32.
|
[24] |
胡滨. 基于曲率属性的复杂断层精细解释技术及其应用[J]. 海洋石油, 2018,38(1):22-27.
|
[24] |
Hu B. Application of curvature-based fine interpretation technique in complex fault area[J]. Offshore Oil, 2018,38(1):22-27.
|
[25] |
严帝, 严海滔, 邬蒙蒙, 等. 基于改进广义S变换分频曲率属性研究[J]. 油气地球物理, 2019,17(1):68-70.
|
[25] |
Yan D, Yan H T, Wu M M, et al. Study on frequency division curvature attribute based on improved generalized S transform[J]. Petroleum Geophysics, 2019,17(1):68-70.
|
[26] |
刘振峰, 曲寿利, 孙建国. 地震裂缝预测技术研究进展[J]. 石油物探, 2012,51(2):191-198.
|
[26] |
Liu Z F, Qu S L, Sun J G, et al. Progress of seismic fracture characterization technology[J]. Geophysical Prospecting for Petroleum, 2012,51(2):191-198.
|
[27] |
仇念广. 叠后地震多属性分析在煤层裂缝识别中的应用[J]. 能源与环保, 2019,41(7):111-115.
|
[27] |
Qiu N G. Application of post-stack seismic multi-attributes analysis in coalbed fracture identification[J]. China Energy and Environmental Protection, 2019,41(7):111-115.
|
[28] |
张薇, 阎建国, 周洪生. 地震玫瑰图分析在裂缝预测中的应用[J]. 长江大学学报:自然科学版·理工, 2012,9(12):61-63.
|
[28] |
Zhang W, Yan J G, Zhou H S. The application of seismic rose in the analysis of fracture[J]. Journal of Yangtze University(Nat. Sci. Edit)Sci. & Eng., 2012,9(12):61-63.
|
[29] |
Guo Y X, Zhang K, Kurt J.Marfurt. Quantitative correlation of fluid flow to curvature lineaments[C]// Expanded Abstracts of the 82nd Annual SEG Meeting.Las Vegas:Society of Exploration Geophysicists, 2012: 501-506.
|
[30] |
张薇. 利用地震玫瑰图进行裂缝识别和应力场分析技术研究[D]. 成都:成都理工大学, 2013.
|
[30] |
Zhang W. Seismic rose diagrams analysis for fracture prediction and tectonic stress[D]. Chengdu:Chengdu University of Technology, 2013.
|
[31] |
孔祥宇, 殷进垠, 张发强. 哈萨克斯坦南图尔盖盆地油气地质特征及勘探潜力分析[J]. 岩性油气藏, 2007,9(3):48-54.
|
[31] |
Kong X Y, Yin J Y, Zhang F Q. Oil gas geological features and its exploration potential in South Turgay Basin,Kazakhstan[J]. Lithologic Reservoirs, 2007,9(3):48-54.
|
[1] |
ZHANG Jing-Yu, FAN Ting-En, WANG Hai-Feng, ZHANG Xian-Wen, DU Xin. Application of curvature attributes to fluvial reservoirs discontinuity detection[J]. Geophysical and Geochemical Exploration, 2021, 45(2): 450-457. |
[2] |
Tao MA, Ying-Jie ZHU, Yong YANG, Xiao-Lin JI, Ding-Ding WANG, Jin-Lan LIU, Wan-Yin WANG. Research on tectonic division in Jiaxie guyots based on gravity and magnetic anomalies[J]. Geophysical and Geochemical Exploration, 2020, 44(4): 938-948. |
|
|
|
|