|
|
Discussion and research on the application of the wide field electromagnetic method to the exploration of metal ore deposits |
JIANG Yong-Fang1,2( ), LI Fang-Shu1,2, CAO Yuan3, XIA Ling-Yun1,2, ZHANG Ting1,2 |
1.Hunan Geosun Hi-technology Co.,Ltd.,Changsha 410208,China 2.Hunan Deep Earth Resources Electromagnetic Exploration Engineering Technology Research Center Changsha 410208,China 3.The Second Geological Exploration Institute of Henan Geological Mineral Resources Exploration and Development Bureau,Zhengzhou 451464,China |
|
|
Abstract In the exploration of metal mineral resources,physical exploration is usually difficult but of low cost.Along with the increasing depth of the exploration and serious influence of human disturbance factors in the mining area,the difficulties and cost of physical exploration have been increasing.What's more,due to the limitations of the technical conditions such as the precision and power of the instruments and equipment,the geological effectiveness is getting worse and worse by adopting the general geophysical prospecting method.However,the wide field electromagnetic method has such advantages as great detective depth,high speed,low cost,high resolution and precision,and strong anti-interference capability,and hence can be effectively applied to metal mineral exploration,and this has been proved many times.Therefore,it is advisable to develop new methods,new technologies and new instruments represented by the wide field electromagnetic method in the investigation of deep orebodies as well as crisis mine resources.This paper introduces the basic principles,working methods,application principles and conditions of wide field electromagnetic method,analyzes and studies the case of a gold mine in Henan Province,and expounds the effectiveness of the wide field electromagnetic method in deep exploration of metal deposits.
|
Received: 27 April 2020
Published: 26 October 2020
|
|
|
|
|
岩矿石名称 | 标本数 | 极化率/% | 电阻率/(Ω·m) | 范围 | 平均值 | 范围 | 平均值 | 安山岩 | 42 | 0.135~2.388 | 1.047 | 1580.7~12213 | 5214.5 | | 花岗斑岩 | 41 | 1.08~2.116 | 1.577 | 563.6~54139.5 | 5297.7 | | 闪长岩 | 16 | 0.64~2.678 | 1.415 | 1137.4~8786.9 | 3942.5 | | 片麻岩 | 39 | 0.707~3.081 | 1.143 | 250.8~10872.3 | 2847.8 | | 矿化岩石 | 31 | 0.633~5.179 | 2.707 | 256.9~5559 | 1865.6 | |
|
Statistical table of electrical parameters of rock (ore)
|
|
Data processing flow of WFEM
|
|
Two-dimensional inversion resistivity section and comprehensive interpretation results of WFEM in GY01 line
|
|
Interpretation results section of GY01 line
|
[1] |
何继善. 广域电磁法和伪随机信号电法[M]. 北京: 高等教育出版社, 2010: 1-7.
|
[1] |
He J S. Wide field electromagnetic sounding methods and pseudo-random signal coding electrical method[M]. Beijing: Higher Education Press, 2010: 1-7.
|
[2] |
何继善. 广域电磁测深法研究[J]. 中南大学学报:自然科学版, 2010,41(3):1065-1072.
|
[2] |
He J S. Wide field electromagnetic sounding methods[J]. Journal of Central South University:Science and Technology, 2010,41(3):1065-1072.
|
[3] |
付思峰. 上宫构造蚀变岩型金矿床地质特征及化探找金经验[J]. 物探与化探, 2008,32(3):267-269.
|
[3] |
Fu S F. Geological characteristics and geochemical gold prospecting achievements in the Shanggong tectonic altered rock type gold deposit[J]. Geophysical and Geochemical Exploration, 2008,32(3):267-269.
|
[4] |
何继善. 可控源音频大地电磁法[M]. 长沙: 中南工业大学出版社, 1990.
|
[4] |
He J S. Control source audio magnetotellurics[M]. Changsha: Central South University Press, 1990.
|
[5] |
汤井田, 何继善. 可控源音频大地电磁法及其应用[M]. 长沙: 中南大学出版社, 2005.
|
[5] |
Tang J T, He J S. The apply of control source audio magnetotellurics[M]. Changsha: Central South University Press, 2005.
|
[6] |
刘春明, 董铁钢, 何继善. 多种电磁法在某金矿的野外勘探应用[J]. 中国有色金属学报, 2013,23(9):2422-2429.
|
[6] |
Liu C M, Dong T G, He J S. Application of various electromagnetic methods in field exploration of a gold mine[J]. Chinese Journal of Nonferrous Metals, 2013,23(9):2422-2429.
|
[7] |
邓锋华, 杨洋, 李帝铨. 广域电磁法在隐伏金矿中的应用[J]. 工程地球物理学报, 2013,10(3):357-362.
|
[7] |
Deng F H, Yang Y, Li D Q. Application of wide area electromagnetic method in concealed gold mine[J]. Journal of Engineering Geophysics, 2013,10(3):357-362.
|
[8] |
姚军明, 赵太平, 李晶, 等. 河南祁雨沟金成矿系统辉钼矿Re-Os年龄和锆石U-Pb年龄及Hf同位素地球化学[J]. 岩石学报, 2009,25(2):374-384.
|
[8] |
Yao J M, Zhao T P, Li J, et al. Molybdenite Re-Os age and zircon U-Pb age and Hf isotope geochemistry of the Qiyugou gold system,Henan Province[J]. Acta Petrologica Sinica, 2009,25(2):374-384.
|
[9] |
黎世美, 瞿伦全, 李先民, 等. 熊耳山地区蚀变构造岩型金矿成矿地质条件及富集规律研究报告[R]. 洛阳:河南省地矿厅第一地质调查队, 1989.
|
[9] |
Li S M, Qu L Q, Li X M, et al. Researches on metallogenic geology and mineralization of the Xiong'ershan Structure-Controlled Alteration-Type Gold Deposit [R]. Luoyang:The First Geological Survey Team of The Department of Geology and Mineral Resources of Henan Province, 1989.
|
[10] |
汪江河, 孙卫志, 刘耀文, 等. 金矿体趋势预测方法及其在河南上宫金成矿带的应用效果[J]. 矿产勘查, 2015,6(6):752-758.
|
[10] |
Wang J H, Sun W Z, Liu Y W, et al. Forcasting method for gold orebody trending and its application on prospecting in Shanggong gold metallogenic belt,Henan[J]. Mineral Exploration, 2015,6(6):752-758.
|
[11] |
李永峰. 豫西熊耳山地区中生代花岗岩类时空演化与钼(金)成矿作用[D]. 北京:中国地质大学(北京), 2005: 1-125.
|
[11] |
Li Y F. The temporal and spatial relationships of Mesozoic era granitoids and molybdenum (gold) deposit mineralization in the Xiong'ershan area[D]. Beijing:China University of Geosciences(Beijing), 2005: 1-125.
|
[12] |
李帝铨, 谢维, 程党性. E-Ex广域电磁法三维数值模拟[J]. 中国有色金属学报, 2013,23(9):2459-2470.
|
[12] |
Li D Q, Xie W, Chen D X. Three-dimensional modeling for E-Ex wide field electromagnetic methods[J]. The Chinese Journal of Nonferrous Metals, 2013,23(9):2459-2470.
|
|
|
|