|
|
A preliminary exploration of the wide field electromagnetic method in aerogeophysical prospecting |
WANG Yong-Bing( ), YIN Wen-Bin, ZHANG Lei |
Hunan Geosun High-tech Co., Ltd., Changsha 410083,China |
|
|
Abstract Based on the basic theory of wide-field electromagnetic method (WFEM) and combined with the current problems of resource exploration and the development status of aviation geophysical prospecting, the authors mainly deal with the aviation wide-area electromagnetic method in three main aspects as a preliminary exploration: basic theory, equipment research and application testing. It is held that the quality of aviation wide-area electromagnetic data collection is susceptible to aircraft flight attitude and aircraft body noise, and high frequency bands greater than 100 Hz have better data quality and practical engineering application feasibility.
|
Received: 22 April 2020
Published: 26 October 2020
|
|
|
|
|
|
Schematic diagram of AWFEM
|
|
WFEM transmission system of 180 kW
|
|
Single component receiver based on aviation-WFEM
|
|
DJI M600Pro drone
|
|
The product example of magnetic rod, coil and fluxgate
|
|
Connection of receiver, coil and drone
|
|
Connection of receiver, magnetic rod and drone (soft connection)
|
|
Connection of receiver, magnetic rod and drone (hard connection)
|
|
Comparison of the signal curve of the three main frequency components of the hard connectionbetween the magnetic rod and the drone
|
|
Comparison of the signal curve of the three main frequency components of the soft connection between the magnetic rod and the drone
|
|
Environmental background field noise
|
|
Comparison of signal curves of various main frequency components of magnetic rods at different distances from the drone
|
频率/Hz | 不同距离下相对偏差/% | 4m | 6m | 8m | 10m | 8192 | -3.44 | 0.21 | 0.19 | 0.13 | 4096 | -2.95 | 0.43 | 0.39 | 0.33 | 2048 | -2.57 | 0.78 | 0.73 | 0.67 | 1024 | -2.04 | 1.26 | 1.23 | 1.17 | 512 | -1.91 | 1.75 | 1.67 | 1.60 | 256 | -1.53 | 1.93 | 1.88 | 1.82 | 128 | -1.27 | 1.56 | 1.69 | 1.71 | 64 | -7.88 | 2.17 | 2.14 | 2.23 | 32 | -12.8 | 1.96 | 1.99 | 2.10 | 16 | -8.91 | 2.02 | 2.19 | 2.22 |
|
The relative deviation of the measured data of the aircraft relative to the magnetic rod at different distances
|
|
Comparison of signal curves of various main frequency components at different altitudes of the drone
|
[1] |
https://baike.so.com/doc/5720898-5933627.html
|
[2] |
何继善. 广域电磁法和伪随机信号电法[M]. 北京: 高等教育出版社, 2010: 169-189.
|
[2] |
He J S. Wan electromagnetic method and P-seudo-random signal method [M]. Beijing: Higher Education Press: 2010: 169-189.
|
[3] |
郭良德. 西方国家航空物探技术的若干进展[J]. 物探与化探, 2000,24(5):340-345.
|
[3] |
Guo L D. Some advances in aerogeophysical techniques in western countries[J]. Geophysical and Geochemical Exploration, 2000,24(5):340-345.
|
[4] |
韩登峰. 我国的航空电法[J]. 物探与化探, 1994,18(3):179-185.
|
[4] |
Han D F. Airborne electrical method of China[J]. Geophysical and Geochemical Exploration, 1994,18(3):179-185.
|
[5] |
雷栋, 胡祥云, 张素芳. 航空电磁法的发展现状[J]. 地质找矿论丛, 2006,21(1):40-44.
|
[5] |
Lei D, Hu X Y, Zhang S F. Development status of airborne electromagnetic[J]. Contributions to Geology and Mineral Resources Research, 2006,21(1):40-44.
|
[6] |
熊盛青. 航空物探“九五”进展综述[J]. 物探与化探, 2002,26(1):1-5,16.
|
[6] |
Xiong S Q. The advances in airborne geophysical survey in the period of the ninth five-year plan[J]. Geophysical and Geochemical Exploration, 2002,26(1):1-5,16.
|
[7] |
高维, 舒晴, 屈进红, 等. 国外航空物探测量系统近年来若干进展[J]. 物探与化探, 2016,40(6):1116-1124.
|
[7] |
Gao W, Shu Q, Qu J H, et al. New progress of aerogeophysical techniques abroad[J]. Geophysical and Geochemical Exploration, 2016,40(6):1116-1124.
|
[8] |
杨云见, 米晓利, 宋喜林, 等. 应用电容耦合电阻率法检测道路隐患[J]. 物探与化探, 2009,33(3):350-353.
|
[8] |
Yang Y J, Mi X L, Song X L, et al. The capacitance coupled resistivity (CCR) method and its application to the detection of subsurface hidden dangers in roads or railways[J]. Geophysical and Geochemical Exploration, 2009,33(3):350-353.
|
[9] |
王志宇, 王顺, 张群英, 等. 一种新型地球物理电容性电场传感器研究[J]. 仪器仪表学报, 2016,37(12):2678-2683.
|
[9] |
Wang Z Y, Wang S, Zhang Q Y, et al. Research on novel capacitive field senser for geophysical prospecting[J]. Chinese Journal of Scientific Instrument, 2016,37(12):2678-2683.
|
[10] |
罗延钟, 张胜业, 王卫平. 时间域航空电磁法一维正演研究[J]. 地球物理学报, 2003,46(5):719-724.
|
[10] |
Luo Y Z, Zhang S Y, Wang W P. A research on one-dimension forward for aerial electromagnetic method in time domain[J]. Chinese Journal of Geophysics, 2003,46(5):719-724.
|
[11] |
何继善. 三元素集合中的自封闭加法与2n系列伪随机信号编码[J]. 中南大学学报:自然科学版, 2010,41(2):632-637.
|
[11] |
He J S. A collection of three elements of selfenclosed addition with 2n series of pseudo-random signal coding[J]. Central South University:Natural Science Edition, 2010,41(2):632-637.
|
[12] |
李帝铨, 胡艳芳. 强干扰矿区中广域电磁法与CSAMT探测效果对比[J]. 物探与化探, 2015,39(5):967-972.
|
[12] |
Li D Q, Hu Y F. A comparison of wide field electromagnetic method with CSAMT method in strong interferential mininsg area[J]. Geophysical and Geochemical Exploration, 2015,39(5):967-972.
|
[13] |
孟庆敏, 满延龙. 频率域航空电磁法的应用领域及应用机制[J]. 物探与化探, 2013,37(2):260-263.
|
[13] |
Meng Q M, Man Y L. The application fields and application mechanism of the frequency field Airborne electomagnetic method[J]. Geophysical and Geochemical Exploration, 2013,37(2):260-263.
|
[14] |
王永兵, 何继善. 一种伪随机信号混合编码及其在油气压裂智能实时监测系统中的应用[J]. 物探与化探, 2020,44(1):74-80.
|
[14] |
Wang Y B, He J S. A hybrid coding and its application to the oil and gas fracturing intelligent real time monitoring system based on pseudorandom signals[J]. Geophysical and Geochemical Exploration, 2020,44(1):74-80.
|
[15] |
王永兵, 何继善. WSJ-4多功能高精度数字化伪随机信号接收系统及应用[J]. 物探与化探, 2014,38(5):1012-1017.
|
[15] |
Wang Y B, He J S. Development and application of the WSJ-4 multifunction digital IP instrument receiving system based on pseudo-random signal[J]. Geophysical and Geochemical Exploration, 2014,38(5):1012-1017.
|
[16] |
王卫平, 王守坦. 吊舱式直升机频率域电磁系统在北京密云红光铁矿的勘查效果[J]. 物探与化探, 2006,30(5):420-426.
|
[16] |
Wang W P, Wang S T. The exploration efficiency of the helicopter frequency domain electromagnetic system with towed bird in the Hongguang Iron Deposit, Miyun County, Beijing[J]. Geophysical and Geochemical Exploration, 2006,30(5):420-426.
|
[17] |
李冰, 王志博, 乔扬, 等. 航空重力起伏飞行中飞机姿态对测量数据影响分析[J]. 物探与化探, 2014,38(5):1024-1028.
|
[17] |
Li B, Wang Z B, Qiao Y, et al. The impact of aircraft attitude on the measurement of airborne gravity survey under drape flying[J]. Geophysical and Geochemical Exploration, 2014,38(5):1024-1028.
|
[18] |
高维, 舒晴, 屈进红, 等. 航空物探飞机典型飞行状态下振动特性研究[J]. 物探与化探, 2016,40(1):93-99.
|
[18] |
Gao W, Shu Q, Qu J H, et al. A study of vibrational characteristics of the airborne geophysics aircraft under typical flight conditions[J]. Geophysical and Geochemical Exploration, 2016,40(1):93-99.
|
[19] |
王林飞, 薛典军, 刘国锋, 等. 航空物探测量数据快速检测与修复技术研究[J]. 物探与化探, 2015,39(S1):133-136.
|
[19] |
Wang L F, Xue D J, Liu G F, et al. A study of the rapid testing and restoring technology for data of aero geophysical survey[J]. Geophysical and Geochemical Exploration, 2015,39(S1):133-136.
|
[20] |
周道卿, 谭林, 谭捍东. 直升机航空电磁资料处理解释方法及时间域航空电磁系统方案研究成果报告[R]. 中国国土资源航空物探遥感中心, 2009.
|
[20] |
Zhou D Q, Tan L, Tan H D. Helicopter aviation electromagnetic data processing and interpretation method and time domain aviation electromagnetic system scheme research report [R]. China Aero Geophysical Survey and Remote Sensing Center for Land and Resources, 2009.
|
[1] |
ZOU Yu, WANG Guo-Jian, YANG Fan, CHEN Yuan. Research progress of methane microseepage in petroliferous basins and its significance for oil-gas exploration[J]. Geophysical and Geochemical Exploration, 2022, 46(1): 1-11. |
[2] |
CHEN Da-Lei, WANG Run-Sheng, HE Chun-Yan, WANG Xun, YIN Zhao-Kai, YU Jia-Bin. Application of integrated geophysical exploration in deep spatial structures: A case study of Jiaodong gold ore concentration area[J]. Geophysical and Geochemical Exploration, 2022, 46(1): 70-77. |
|
|
|
|